Association between Body Condition, Ultrasonography, Morphometric Measurements and Testicular Biometry in Stallions in the Municipality of Facatativa, Cundinamarca, Colombia

Abstract

<p>The study was carried out to determine the association between morphometric measurements, body fat measured by ultrasound and testicular biometry in horses belonging to the Caballar Mancillas Breeding Facility of the National Police, located in the municipality of Facatativá, Cundinamarca. Morphometrics were performed on 12 adult stallions of 6 breeds, between 5 and 14 years old, which were in the training process and in a reproductive program, and show physical, mental and reproductive well-being. The measurements analyzed were height at the withers (AL), chest circumference (PTm), body length (LCm), neck circumference (CCmU), neck circumference to height at the withers ratio (PCCA), chest circumference to height at the withers ratio (PPTmA), real weight (PBR), skinfold thickness (SFTPCmm), body condition score (CC), fat thickness at the hip (EGC), fat thickness at the base of the tail (EGCO), body mass index (BMIIMC), body fat percentage (PGC), anogenital distance (DAG), scrotal width (AE), and total testicular volume (VTT), estimated daily sperm production (DSO) . To estimate fatness, the body mass index (based on morphometric measurements) and the percentage of body fat (based on ultrasound fat measurements) were calculated. Descriptive statistics and principal component Pearson correlations analysis were performed. The means found for AC, PT, LC, PR, EPC, CC, CCU, EGC, EGCO, IMC, VT, DSO and DAG, AL, PTm, LCm, PCmm, CC, CCm, PB, EG, EC, AE, LTI, ATI, HTI, LTD, ATD, HTD were, respectively, 1.64 ± 5.02 m, 1.93 ± 7.16 m, 1,70 ± 6.93 m, 562 ± 60.29 kg, 8.76 ± 1.06 mm, 5.92 ± 1.08, 1.21 ± 12.80 m, 2.12 ± 0.92 mm, 2.49 ± 0, 48 mm, 206.58 ± 14.53 kg/m2, 538.78 ± 104.39 cm3, 12.80 ± 2.50 x 109, and 48.00 ± 3.64 cm 1,67 ± 0,05 m, 1,95 ± 0,08 m, 1,71 ± 0,06 m, 1,23 ± 0,12 m, 8,83 ± 1,19 mm, 6,92 ± 0,67, 1,23 ± 0,12 m, 562,7 ± 60,3 kg, 2,35 ± 0,66 mm, 2,54 ± 0,72 mm, 12,03 ± 0,87 cm, 10,84 ± 0,64 cm, 6,97 ± 0,56 cm, 8,36 ± 0,76 cm, 10,38 ± 0,87 cm, 6,53 ± 0,43 cm, and 8,88 ± 1,09 cm. High and positive correlations were presented between race and morphometric parameters such as body length, weight with scale, thoracic perimeter and body condition chest circumference and neck circumference. The results of this study allow us to establish that the ultrasonographic measurements of fat thickness at the hip (EGC), and fat thickness at the base of the tail (EGCO), are is an important predictors of the level of fatness in the horse, and can be used in studies of morphometry and clinical evaluation of healthy horses to establish their ideal body condition score, however, it must be deepened since the race plays a determining role.</p>
PDF (Spanish)

References

Fowler AL, Pyles MB, Bill VT, Hayes SH, Harris PA, Lawrence LM. Relationships between measurements of body fat in thoroughbred horses. J Equine Vet Sci. 2020;85: 102873. Disponible en: https://doi.org/10.1016/j.jevs.2019.102873

El-Maaty AMA, Gamal A, Shaker MH, Ezzo OH. Age–related rump fat, fat percent, body fat mass, leptin, androgens, and semen parameters of Arab stallions. Asian Pac J Reprod. 2014;3(3): 184-191. Disponible en: https://doi.org/10.1016/S2305-0500(14)60024-5

Chapman SJ. Obesity and the health and welfare of the leisure horse. Vet Nurs. 2014;5(2): 94-99. Disponible en: https://doi.org/10.12968/vetn.2014.5.2.94

Webb SP, Potter GD, Evans JW, Webb GW. Influence of body fat content on digestible energy requirements of exercising horses in temperate and hot environments. J Equine Vet Sci. 1990;10(2): 116-120. Disponible en: https://doi.org/10.1016/S0737-0806(06)80118-8

Lawrence L, Jackson S, Kline K, Moser L, Powell D, Biel M. Observations on body weight and condition of horses in a 150-mile endurance ride. J Equine Vet Sci. 1992;12(5): 320-324. Disponible en: https://doi.org/10.1016/S0737-0806(06)81345-6

Donaldson MT, McFarlane D, Jorgensen AJ, Beech J. Correlation between plasma α-melanocyte-stimulating hormone concentration and body mass index in healthy horses. Am J Vet Res. 2004;65(11): 1469-1473. Disponible en: https://doi.org/10.2460/ajvr.2004.65.1469

Rúa MAS, Quirino CR, Veja WHO, Bartholazzi A, Basto R, Matos LF, David CMG. Biometric testicular and serum testosterone concentration of Brazilian Ponies stallions. Rev Bras Saúde Prod Anim. 2017;18(1): 204-210. Disponible en: https://doi.org/10.1590/S1519-99402017000100019

Rossdale P, Ricketts S. Equine stud farm medicine. 2a ed. Londres: Baillièrs Tindall; 1981. Disponible en: https://doi.org/10.1111/j.2042-3306.1981.tb03470.x

Lording P. Erythrocytes. Vet Clin North Am Equine Pract. 2008;24(2): 225-237. Disponible en: https://doi.org/10.1016/j.cveq.2008.04.002

Lacerda L, Campos R, Sperb M, Soares E, Barbosa P, Godinho E, Ferreira R, Santos V, González F. Hematologic and biochemical parameters in three high performance horse breeds from southern Brazil. Arch Vet Sci. 2006;(11): 40-44. Disponible en: http://dx.doi.org/10.5380/avs.v11i2.6783

Kedzierski W, Bergero D. Comparison of plasma biochemical parameters in Thoroughbred and Purebred Arabian horses during the same-intensity exercise. Pol J Vet Sci. 2006;(9): 233-238. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17203741/

Andrews F, Geiser D, White S, Williamson L, Maykuth P, Green E. Haematological and biochemical changes in horses competing in a 3 Star horse trial and 3-day-event. Equine Vet J Suppl. 1995;(20): 57-63. Disponible en: https://doi.org/10.1111/j.2042-3306.1995.tb05009.x

Craig L, Hintz H, Soderholm L, Shaw K, Schryver H. Changes in blood constituents accompanying exercise in polo horses. Cornell Vet. 1985;(75): 297-302. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3921311/

Pérez R, García M, Cabezas I, Guzmán R, Merino V, Valenzuela S, González C. Actividad física y cambios cardiovasculares y bioquímicos del caballo chileno a la competencia de rodeo. Arch Med Vet. 1997;29(2): 221-234. Disponible en: http://dx.doi.org/10.4067/S0301-732X1997000200007

Gómez C, Petrón P, Andaur M, Pérez R, Matamoros R. Medición post-ejercicio de variables fisiológicas, hematológicas y bioquímicas en equinos de salto holsteiner. Rev Cient. 2004;14(3): 244-253. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/15051

Díaz H, Gavidia C, Li O, Tió A. Valores hematológicos, bilirrubinemia y actividad enzimática sérica en caballos peruanos de paso del valle de Lurín, Lima. Rev Inv Vet Perú. 2011;22(3): 213-222. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1609-91172011000300006

Velásquez Mosquera JC, Mendoza Sánchez G, Corrales Álvarez JD, Parra Pineda MA, Medina Rodríguez AC, Izquierdo Sánchez CD, González Acosta JP. Asociación de medidas morfométricas con grasa en el anca en caballos de salto en una escuela ecuestre de Bogotá. Rev Med Vet. 2016;(32): 67-77. Disponible en: https://doi.org/10.19052/mv.3856

De Keyser K, Peeters LM, Buys N, Janssens S. Assessment of skinfold thickness as a factor related to chronic progressive lymphoedema in Belgian draught horses. Commun Agric Appl Biol Sci. 2011;76(1): 189-192. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21539228/

Henneke DR, Potter GD, Kreider JL, Yeates BF. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet J. 1983;15(4): 371-372. Disponible en: https://doi.org/10.1111/j.2042-3306.1983.tb01826.x

Zuluaga Cabrera AM, Correa Valencia NMDP. Body fat evaluation in Colombian Paso horses: body condition score and morphometric and ultrasound measurements. Braz J Vet Res Anim Sci. 2020;57(4): e171082. Disponible en: https://doi.org/10.11606/issn.1678-4456.bjvras.2020.171082

Love CC, García MC, Riera FR, Kenney RM. Evaluation of measures taken by ultrasonography and caliper to estimate testicular volume and predict daily sperm output in the stallion. J Reprod Fertil Suppl. 1991;(44): 99-105. Disponible en: https://pubmed.ncbi.nlm.nih.gov/1795307/

Mogensen DM, Pihl MB, Skakkebæk NE, Andersen HR, Juul A, Kyhl HB, et al. Prenatal exposure to antifungal medication may change anogenital distance in male offspring: a preliminary study. Environ Health. 2017;16: 68. Disponible en: https://doi.org/10.1186/s12940-017-0263-z

Kane RA, Fisher M, Parrett D, Lawrence LM. Estimating fatness in horses. En: Proceedings of the 10th Equine Nutrition and Physiology Symposium. 1987;(127): 31.

Carroll CL, Huntington PJ. Body condition scoring and weight estimation of horses. Equine Vet J. 1988;20(1): 41-45. Disponible en: https://doi.org/10.1111/j.2042-3306.1988.tb01451.x.

Sakamoto H, Saito K, Oohta M, Inoue K, Ogawa Y, Yoshida H. Testicular volume measurement: comparison of ultrasonography, orchidometry, and water displacement. Urology, 2007;69(1): 152-157. Disponible en: https://doi.org/10.1016/j.urology.2006.09.012

R Core Team. R: A language and environment for statistical computing [Internet]. R Foundation for Statistical Computing; Vienna, Austria. 2017. Disponible en: https://www.R-project.org/

Pearson K. Notes on regression and inheritance in the case of two parents. Proceed Roy Soc Lond. 1895(58): 240.242. Disponible en: https://www.jstor.org/stable/115794

Brooks SA, Makvandi-Nejad S, Chu E, Allen J, Streeter C, Gu E, et al. Morphological variation in the horse: defining complex traits of body size and shape. Anim Gen. 2010;41(Suppl 2): 159-165. Disponible en: https://doi.org/10.1111/j.1365-2052.2010.02127.x

Pérez-Ruiz M, Tarrat-Martína D, Sánchez-Guerrero MJ, Valera M. Advances in horse morphometric measurements using LiDAR. Compu Electr Agric. 2020;174: 105510. Disponible en: https://doi.org/10.1016/j.compag.2020.105510

Martín Giménez T. Estudio epidemiológico de obesidad, desregularización de la insulina y otras variables asociadas con el síndrome metabólico equino en el caballo pura raza español [Tesis doctoral]. Zaragoza: Universidad de Zaragoza; 2016.

Quaresma M, Payan-Carreira R, Silva RS. Relationship between ultrasound measurements of body fat reserves and body condition score in female donkeys. Vet J. 2013;197(2): 329-334. Disponible en: https://doi.org/10.1016/j.tvjl.2012.12.031

Mottet R, Onan G, Hiney K. Revising the Henneke body condition scoring system: 25 years later. J Equine Vet Sci. 2009;(29): 417-418. Disponible en: https://doi.org/

Harker, I.J., P.A. Harris, and C.F. Barfoot. The body condition score of leisure horses competing at an unaffiliated championship in the UK. J. Equine Vet. Sci. 2011;(31):253-254. Disponible en: https://doi.org/10.1016/j.jevs.2009.04.116

Fonseca RG, Kenny DA, Hill EW, Katz LM. The relationship between body composition, training and race performance in a group of Thoroughbred flat racehorses. Equine Vet J. 2013;45(5): 552-557. Disponible en: https://doi.org/10.1111/evj.12024

Morley SA, Murray JA. Effects of body condition score on the reproductive physiology of the broodmare: a review. J. Equine Vet Sci. 2014;34(7): 842-853. Disponible en: https://doi.org/10.1016/j.jevs.2014.04.001

Gill JC, Lloyd KE, Bowman M, Siciliano PD, Pratt-Phillips SE. Relationships among digestible energy intake, body weight, and body condition in mature idle horses. J Equine Vet Sci. 2017;54: 32-36. Disponible en: https://doi.org/10.1016/j.jevs.2017.02.017

McCue ME, Geor RJ, Schultz N. Equine metabolic syndrome: A complex disease influenced by genetics and the environment. J Equine Vet Sci. 2015;35(5): 367-375. Disponible en: https://doi.org/10.1016/j.jevs.2015.03.004

Gunn HM. Muscle, bone and fat proportions and the muscle distribution of Thoroughbreds and other horses. En: Gillespie JN, Robinson NE (eds.), Equine exercise physiology 2. Proceedings of 2nd International Conference on Equine Exercise Physiology. Davis, USA: ICEEP Publications; 1987. p. 253-264. Disponible en: https://doi.org/10.1111/j.2042-3306.1988.tb01512.x

Dugdale AHA, Grove-White D, Curtis GC, Harris PA, McG Argo C. Body condition scoring as a predictor of body fat in horses and ponies. Vet J. 2012;194(2): 173-178. Disponible en: https://doi.org/10.1016/j.tvjl.2012.03.024

Burrows AM. Relationship between live body condition score and internal kidney, pelvic, and heart fat measurements in equine carcasses [Tesis de maestría]. Texas: West Texas A&M University, Canyon, USA; 2017. Disponible en: https://wtamu-ir.tdl.org/handle/11310/109

Hurtgen JP. Evaluation of the stallion for breeding soundness. Vet Clin Nor Am Equi Pract. 1992;8(1): 149-165. Disponible en: https://doi.org/10.1016/S0749-0739(17)30472-8

Vecchi I, Sabbioni A, Bigliardi E, Morini G, Ferrari L, Di Ciommo F, et al. Relationship between body fat and body condition score and their effects on estrous cycles of the Standardbred maiden mare. Vet Res Commun. 2010;34 (Suppl 1): S41-45. Disponible en: https://doi.org/10.1007/s11259-010-9407-0

Love CC, García MC, Riera FR, Kenney RM. Use of testicular volume to predict daily sperm output in the stallion. Proc Am Assoc Eq Pract. 1990;(36):15-21. Disponible en: https://agris.fao.org/agris-search/search.do?recordID=US9301155

Pricking S, Bollwein H, Spilker K, Martinsson G, Schweizer A, Thomas S, et al. Testicular volumetry and prediction of daily sperm output in stallions by orchidometry and two- and three-dimensional sonography. Theriogenology. 2017;(104): 149-155. Disponible en: https://doi.org/10.1016/j.theriogenology.2017.08.015

Thompson DL, Pickett BW, Squires EL, Amann RP. Testicular measurements and reproductive characteristics in stallions. J Reprod Fertil Suppl. 1979;(27): 13-17. Disponible en: https://pubmed.ncbi.nlm.nih.gov/289781/

Keywords

morphometric measures
body score condition
testicular morphometric
sperm traits