Efectos del uso sinérgico de eubióticos sobre parámetros productivos y alométricos en pollos de engorde de la línea Ross AP

Resumen

Actualmente los eubióticos se postulan como una alternativa potencial de reemplazo a los antibióticos utilizados como subterapéuticos, a modo de promotores de crecimiento. Aunque múltiples estudios han demostrado el efecto benéfico de los eubióticos en los parámetros productivos y alométricos del pollo de engorde, el uso combinado de estos ha sido poco evaluado, sin conocerse su efecto sinérgico. El objetivo del presente estudio fue evaluar el efecto del uso sinérgico de eubióticos sobre los parámetros productivos y alométricos en pollos de engorde de la línea Ross AP. El estudio se realizó durante el año 2020 en una granja experimental del municipio de Piedecuesta, Santander, a una altura de 1005 msnm. Un total de 1400 animales fueron analizados mediante un diseño completamente al azar, evaluando siete tratamientos T1 = dieta base (DB), T2 = DB + antibiótico promotor de crecimiento (APC), T3 = DB + extracto natural (EN) + probiótico (Pro) + prebiótico (Pre), T4 = DB + EN + Pro + ácido graso de cadena media (AGCM), T5 = DB + Pre + Pro + AGCM, T6 = DB + EN + Pre + AGCM y T7 = DB + Pre + Pro + AGCM); con ocho repeticiones de 25 animales por cada tratamiento. Los parámetros productivos fueron evaluados al día 7, 14, 21, 28 y 35, mientras que los alométricos específicamente al día 35. Adicionalmente, un análisis de productividad económica fue realizado teniendo en cuenta los valores comerciales reportados al cierre del año 2020. En general se observaron diferencias significativas (P<0.05) en los siguientes parámetros productivos: peso promedio por ave al día 7, 14, 21, 28 y 35; consumo total por corral al día 14, 21 y 28; consumo acumulado por ave al día 21, 28 y 35; consumo promedio por ave al día 21, 28 y 35; conversión ajustada por mortalidad al día 21, 28 y 35; VPI al día 7, 21, y 28 e IEE, con los mejores valores en los tratamientos 3, 5, 6 y 7. Respecto a los parámetros alométricos, se observaron diferencias significativas (P<0.05) en los siguientes ítems: peso ave con vísceras y con plumas, peso ave sin vísceras y sin plumas, peso pechuga, peso alas, peso costillar y peso tarsos. La mayor productividad económica se obtuvo en los tratamientos 6 y 7, comparado con el tratamiento 1, respectivamente. En conclusión, se determinó que los mejores parámetros productivos y alométricos se presentaron en los animales que consumieron los tratamientos que contenían Manano-oligosacárido (MOS) como prebiótico en su formulación, por tal motivo la adición de estos compuestos, deben considerarse como alternativa nutricional inocua para mejorar el efecto sinérgico con otros eubióticos, e incrementar la eficiencia de los sistemas productivos.
PDF

Referencias

MacDonald, K. Federación Nacional de Avicultores de Colombia. Precios mayoristas [internet]. FENAVI; 2021 [citado 2023 abr 14]. Disponible en https://fenavi.org/estadisticas/precios-mayoristas-pollo/

Arenas NE, Moreno Melo V. Producción pecuaria y emergencia de antibiótico resistencia en Colombia: revisión sistemática. Infectio. 2018;22(2):110-119. https://doi.org/10.22354/in.v22i2.717

Martinez Rocha AK. Uso de antimicrobianos en la avicultura: sus implicaciones en la salud pública [tesis maestría]. Bogotá: Universidad Nacional de Colombia; 2012.

Ardoino SM, Toso RE, Alvarez HL, Mariani EL, Cachau PD, Mancilla MV, et al. Antimicrobianos como promotores de crecimiento (AGP) en alimentos balanceados para aves: uso, resistencia bacteriana, nuevas alternativas y opciones de reemplazo. CienVet. 2018;19(1):50-66. https://doi.org/10.19137/cienvet-20171914

Untari T, Herawati O, Anggita M, Asmara W, Endang A, Hastuti T, et al. The Effect of Antibiotic Growth Promoters (AGP) on Antibiotic Resistance and the Digestive System of Broiler Chicken in Sleman, Yogyakarta. BIO Web Conf. 2021;33:04005. https://doi.org/10.1051/bioconf/20213304005

Mohammadzadeh M, Montaseri M, Hosseinzadeh S, Majlesi M, Berizi E, Zare M, et al. Antibiotic residues in poultry tissues in Iran: A systematic review and meta-analysis. Environ Res. 2021;204(Pt B):112038. https://doi.org/10.1016/j.envres.2021.112038

Departamento Nacional de Planeación DNP. CONPES 2007. 2017.

Dirección de Medicamentos y Tecnologías en Salud. Plan nacional de respuesta a la resistencia a los antimicrobianos [internet]. MINSALUD; 2018 [citado 2023 abr 14]. Disponible en https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/plan-respuesta-resistencia-antimicrobianos.pdf

Sun B, Hou L, Yang Y. Effects of Adding Eubiotic Lignocellulose on the Growth Performance, Laying Performance, Gut Microbiota, and Short-Chain Fatty Acids of Two Breeds of Hens. Front Vet Sci. 2021;8:668003. https://doi.org/10.3389/fvets.2021.668003

Díaz López EA, Ángel Isaza J, Ángel D. Probióticos en la avicultura: una revisión: Rev Med Vet. 2017;(35):175-189. https://doi.org/10.19052/mv.4400

Wang Y, Dong He, Song D, Zhou H, Wang W, Miao H, et al. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative abilities, immune functions, and caecal microflora in broiler chickens. Food Agric Immunol. 2018;29(1):859-869. https://doi.org/10.1080/09540105.2018.1463972

Weber GM, Michalczuk M, Huyghebaert G, Juin H, Kwakernaak C, Gracia MI. Effects of a blend of essential oil compounds and benzoic acid on performance of broiler chickens as revealed by a meta-analysis of 4 growth trials in various locations. Poult Sci. 2012;91(11):2820-2828. https://doi.org/10.3382/ps.2012-02243

Song D, Li A, Wang Y, Song G, Cheng J, Wang L, et al. Effects of synbiotic on growth, digestibility, immune and antioxidant performance in broilers. Animal. 2022;16(4):100497. https://doi.org/10.1016/j.animal.2022.100497

Instituto Latinoamericano del Pollo. Precios de Mercados Internacionales de la Carne de Pollo [internet]. ILP; 2021 [citado 2022 sep 20]. Disponible en https://ilp-ala.org/precios-de-mercados-internacionales-de-la-carne-de-pollo/

Arocena PF, Zonco Menghini CA, Rubio, R. Utilización de prebiótico en la alimentación de pollos de engorde [tesis pregrado]. Tandil: Universidad Nacional del Centro de la Provincia de Buenos Aires.

Song J, Xiao K, Ke YL, Jiao LF, Hu CH, Diao QY, et al. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult Sci. 2014;93(3):581-588. https://doi.org/10.3382/ps.2013-03455

Teng PY, Adhikari R, Llamas-Moya S, Kim WK. Effects of combination of mannan-oligosaccharides and β-glucan on growth performance, intestinal morphology, and immune gene expression in broiler chickens. Poult Sci. 2021;100(12):101483. https://doi.org/10.1016/j.psj.2021.101483

Biswas A, Mohan N, Dev K, Mir NA, Tiwari AK. Effect of dietary mannan oligosaccharides and fructo-oligosaccharides on physico-chemical indices, antioxidant and oxidative stability of broiler chicken meat. Sci Rep. 2021;11:20567. https://doi.org/10.1038/s41598-021-99620-2

Mostafa M, Thabet H, Abdelaziz M. Effect of Bio-Mos Utilization in Broiler Chick Diets on Performance, Microbial and Histological Alteration of Small Intestine and Economic Efficiency. Asian J Anim Vet Adv. 2015;10(7):323-334. https://doi.org/10.3923/ajava.2015.323.334

Zhou M, Tao Y, Lai C, Huang C, Zhou Y, Yong Q. Effects of Mannanoligosaccharide Supplementation on the Growth Performance, Immunity, and Oxidative Status of Partridge Shank Chickens. Animals. 2019;9:817. https://doi.org/10.3390/ani9100817

Benites V, Gilharry R. Evaluación del uso de oligosacáridos – mananos: Bio-Mos® y Safmannan® en la productividad de pollos de engorde en condiciones limpias y sucias [tesis pregrado]. Honduras: Universidad Zamorano; 2007.

Savage T, Cotter P, Zakrzewska E. The effect of feeding mannan oligosaccharide on immunoglobuilins, plasma IgG and bile IgA of Wrolstad MW male turkeys. Puolt Sci. 1996;75:143-148.

Kridtayopas C, Rakangtong C, Bunchasak C, Loongyai W. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poult Sci. 2019;98(10):4595-4605. https://doi.org/10.3382/ps/pez152

Roberfroid MB. Prebiotics and probiotics: ¿are they functional foods? Am J Clin Nutr. 2000;71(6):1682S-1687S. https://doi.org/10.1093/ajcn/71.6.1682S

Greene G, Koolman L, Whyte P, Lynch H, Coffey A, Lucey B, et al. The efficacy of organic acid, medium chain fatty acid and essential oil based broiler treatments; in vitro anti-Campylobacter jejuni activity and the effect of these chemical-based treatments on broiler performance. J Appl Microbiol. 2022;132(1):687-695. https://doi.org/10.1111/jam.15204

Irawan A, Hidayat C, Jayanegara A, Ratriyanto A. Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta-analysis. Asian-Australas J Anim Sci. 2021;34(9):1499-1513. https://doi.org/10.5713/ab.20.0668

Liu SJ, Wang J, He TF, Liu HS, Piao XS. Effects of natural capsicum extract on growth performance, nutrient utilization, antioxidant status, immune function, and meat quality in broilers. Poult Sci. 2021;100(9):101301. https://doi.org/10.1016/j.psj.2021.101301

Hassan FA, Elkassas N, Salim I, El-Medany S, Aboelenin SM, Shukry M, et al. Impacts of Dietary Supplementations of Orange Peel and Tomato Pomace Extracts as Natural Sources for Ascorbic Acid on Growth Performance, Carcass Characteristics, Plasma Biochemicals and Antioxidant Status of Growing Rabbits. Animals. 2021;11:1688. https://doi.org/10.3390/ani11061688

Nguyen DH, Lee KY, Mohammadigheisar M, Kim IH. Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poult Sci. 2018;97(12):4351-43588. https://doi.org/10.3382/ps/pey339

Haque MH, Sarker S, Islam MS, Islam MA, Karim MR, Kayesh MEH, et al. Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective. Biology. 2020;9:0411. https://doi.org/10.3390/biology9110411

McEwen SA, Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis. 2002;34(Suppl 3):S93-S106. https://doi.org/10.1086/340246

Carvalho IT, Santos L. Antibiotics in the aquatic environments: A review of the European scenario. Environ Int. 2016;94:736-757. https://doi.org/10.1016/j.envint.2016.06.025

Palabras clave

endocarditis infecciosa
insuficiencia valvular
criterios de Duke modificados
soplo de aparición súbita
lesiones vegetativas