Sediment Composition of the System Affluent-Oxidation Pool-Effluent in an Intensive Farm of Oncorhynchus mykiss

Abstract

Sediment is the surface layer in the bottom of ponds or oxidation pools. It is created basically due to the deposition of solids in suspension, nutrients, and soil particles that contact the water and are produced naturally in farming operations. Today, the management and arrangement are a must in technical issues due to the environmental implications generated by the discharges coming from fish cultures. The general characterization of the sediment was carried out in three sectors of an intensive production farm, affluent, oxidation pool, and effluent. It included four parameters that were measured in three different time points. Obtained values were compared using one-way variance analysis with α = 0.05 as the significance level. In addition, when necessary, a Tukey test was carried out to pin down the differences. It enabled us to find the measures of available phosphorus, organic matter, organic carbon, and the ratio C: N. the differences found between the sectors are approximate values to the effect of the fish production regarding the sediment composition.
PDF (Spanish)

References

Kumar B, Shah R, Mukherjee D. Geochemical distribution of heavy metals in sediments from sewage fed fish ponds from Kolkata Wetlands, India. Chem. Spec. Bioavailab. 2011;23: 24-32. Disponible en: https://doi.org/10.3184/095422911X12966667026105

Parra JP, Espinosa LF. Distribución de metales pesados (Pb, Cd Zn) en perfiles de sedimento asociado a Rhizophora mangle en el río Sevilla (Ciénaga Grande de Santa Marta), Colombia. Bol. Invest. Mar. Cost. 2008;37(1): 95-110. Disponible en: https://doi.org/10.25268/bimc.invemar.2008.37.1.184

Milthon B, Lujan M, Mejía C. Optimización de las dietas acuícolas para disminuir el impacto ambiental de la acuicultura. Dica Inventa. 2011;10: 8-10

Wezel A, Arthaud F, Dufloux C, Renoud F, Vallod D, Robin J, Sarrazin B. Varied impact of land use on water and sediment parameters on fish ponds of the Dombes agroecosystem, France. Hydrolog Sci Jour. 2013:58(4). Disponible en: https://doi.org/10.1080/02626667.2013.780656

Vallod D, Sarrazin B. Caractérisation de l’effluent de vidange d’un étang de pisciculture extensive. Hydrol Sci J. 2010;55(3): 394–402. Disponible en: https://doi.org/10.1080/02626661003683272

Dalu T, Wasserman RJ, Tonkin ID, Mwedzi T, Magoro ML, Weyl OLF. Water or sediment? Partitioning the role of water column and sediment chemistry as drivers of macroinvertebrate communities in an austral South African stream. Sci Total Environ. 2017;607-608: 317-325. Disponible en: https://doi.org/10.1016/j.scitotenv.2017.06.267

Salazar F, Alfaro M, Teuber N, Saldaña R. Uso de lodos de la industria salmonera en suelos agrícolas. Rev Tie Adentro. 2005;60(enero-febrero): 53.

Ministerio de Agricultura y Desarrollo Rural de Colombia. Cadena de la acuicultura, tercer trimestre. Boletín 37. Bogotá: Dirección de Cadenas Pecuarias, Pesqueras y Acuícolas; 2020.

Alves R, Baccarin A. Efeito da produção de peixes em tanques-rede sobre sedimentação de material em suspensão e de nutrientes no córrego da arribada. Nova Avanhadava. 2005;1: 329-347.

Reimer J, Huerta-Diaz M. Phosphorus speciation and sedimentary fluxes in hypersaline sediments of the Guerrero Negro salt evaporation area, Baja California Sur, México. Estuar Coast. 2011;34: 514-528. Disponible en: https://doi.org/10.1007/s12237-010-9308-z

Chattopadhyay GN, Banerjee A. Soil system-based productivity management of fishponds in red and lateritic soil zones. World Aquaculture. 2005;36(2): 57-61.

Stevenson FJ, Cole AM. Cycles of soils: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients (English Edition). 2nd Edition. Wiley; 2008.

Instituto Geográfico Agustín Codazzi, IGAC. Consideraciones generales para interpretar análisis químicos de suelos. Guía práctica. Bogotá: IGAC; 2018.

Instituto Geográfico Agustín Codazzi, IGAC. Geoportal mapa de suelos de Colombia. Bogotá: IGAC; 2018. Disponible en: http://www.igac.gov.co

Hernández G, Yossa M, Vásquez W. Dinámica del fósforo en estanques piscícolas cultivados con cachama blanca (Piaractus brachypomus). Memorias XVI Jornada de Acuicultura. Instituto de Acuicultura de Los Llanos IALL; 2010. pp. 78-85.

Thunjai T, Boyd CE, Boonyaratpalin M. Bottom soil quality in tilapia ponds of different age in Thailand. Aquaculture Research. 2004;35: 698-705. Disponible en: https://doi.org/10.1111/j.1365-2109.2004.01072.x

Dayton E, Basta N. Use of drinking water treatment residuals as a best management to reduce phosphorus risk index scores. Env Annual. 2005;34(6): 2117-2121. Disponible en: https://doi.org/10.2134/jeq2005.0083

Yossa M, Hernández G, Vásquez W, Ortega J, Moreno J, Vinatea L. Composición y dinámica de los sedimentos en estanques de cachama blanca y tilapia roja. Orin Supl. 2014;18(2): 286-293.

Ordóñez-Díaz MC, Bravo-Realpe I, Figueroa-Casas A. Flujo de carbono orgánico total (COT) en una cuenca andina: caso subcuenca río Las Piedras. Rev Ing Univ Med (Col). 2014;13(24): 29-42. Disponible en: https://doi.org/10.22395/rium.v13n24a2

Figueroa R, Palma A, Ruiz V, Niell X. Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de las aguas en un río mediterráneo de Chile: río Chillán, VIII Región. Rev. Chil Hist Nat. 2007;80: 225-242. https://doi.org/10.4067/S0716-078X2007000200008

Boyd, C.E. Bottom soils, sediment and pond aquaculture. New York: Edit. Chapman & Hall; 1995. pp. 69-137. Disponible en: https://doi.org/10.1007/978-1-4615-1785-6_3

Tepe Y, Boyd CE. Sediment Quality in Arkansas Bait Minnow Ponds. J. World Aquacult Soc. 2007;33(3): 221-232. Disponible en: https://doi.org/10.1111/j.1749-7345.2002.tb00499.x

Thi Da C, Anh Tu P, Livsey J, Tang VT, Berg H, Manzoni S. Improving productivity in integrated fish-vegetable farming systems with recycled fish pond sediments. Agronomy. 2020;10(7): 1025. Disponible en: https://doi.org/10.3390/agronomy10071025

Hickman J, Whitney D. Soil conditioners. North Central Regional Extension Publication 295. 1992; Kansas, USA.

Yossa M, Ortega J. Relación de C: N en sedimentos superficiales de piscícolas comerciales en la región de la Orinoquia Colombiana. En: Memorias 4ª Conferencia Latinoamericana sobre cultivo de peces nativos. Universidad de Los Llanos – Instituto de Acuicultura de Los Llanos IALL; 2013. 257 p.

Sanchez J. Comunicación personal; 2020.

Araújo Da Silva J, Do Socorro M, Valadares De Barretto EVJ, Costa Primo D. Management of sludge from fish ponds at the edge of the Itaparica Reservoir (Brazil): an alternative to improve agricultural production. Reg Environ Ch. 2018;18: 1999-2004. Disponible en: https://doi.org/10.1007/s10113-017-1181-x

Muendo P, Verdegem M, Stoorvogel J, Milstein A, Gamal D, Pham Minh J. Sediment accumulation in fish ponds, it’s potential for agricultural use. Int J Fish Aqua Stud. 2014;1(5): 228-241.

Nhut N, Haor Vbosma JV, Eding E, Verdegem J. Options to reuse sludge from striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) ponds and recirculating systems. Aquacult Eng. 2019;87. Disponible en: https://doi.org/10.1016/j.aquaeng.2019.102020

Casamitjanaa-Causa M, Rodríguez-Roda l, Dalmau-Figueras M. Influence of sludge recirculation on nutrient removal in submerged membrane bioreactors. Rev EIA. 2015;12(2): 77-83. Disponible en: http://dx.doi.org/10.14508/reia.2015.12.E2.77-83

Wedler E. Introducción en la acuacultura con énfasis en los neotrópicos. Santa Marta, Colombia: Litoflash Impresión; 1998.

Tebbut TH. Principles of water quality control. United Kingdom: Pergamon Press Ltd.; 2008

Bordós G, Urbáanyi B, Micsinai A, Kriszt B, Palota Z, Szabó I, Hantosi Z, Szoboszlay S. Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin, Europe. Hemosph. 216(2019): 110-116. Disponible en: https://doi.org/10.1016/j.chemosphere.2018.10.110

Keywords

trout farm
sediment
general analysis