Castañeda Alvarez G, Gutiérrez Espinosa M, Santamaría Pérez F. Alimentación de alevinos de bagre rayado, Pseudoplatystoma metaense (Buitrago-Suárez y Burr 2007): cambio a dieta inerte. Orinoquía. 2014;18(1): 198-202.
Sánchez JAM, Moyetones F, Cerdá MJ. Influencia del contenido proteico en el crecimiento de alevines de bagre yaque, Leiarius marmoratus, alimentados con concentrados comerciales. Zootec Trop. 2009;27(2): 187-194.
Moreno Guerra YA, Mira Lopez TM, Rodríguez Pulido JA, Medina Robles VM. Desarrollo embrionario de híbridos de Pseudoplatystoma metaense Suarez, 2007 x Leiarius marmoratus Gill, 1870 (Siluriformes: Pimelodidae). Orinoquia. 2016;20(2 Sup): 78–85. Disponible en: https://doi.org/10.22579/20112629.444
Porras-Rivera G, Rodríguez-Pulido JA. Comparación y Caracterización Morfométrica del Híbrido (Pseudoplatystoma metaense x Leiarius marmoratus) y sus Parentales (Siluriformes: Pimelodidae) - Morphometric Comparison and Characterization of the Hybrid (Pseudoplatystoma metaense x Leiarius marmoratus) and its Parental Lines (Siluriformes: Pimelodidae). Int J Morphol. 2019;37(4). Disponible en: https://doi.org/10.4067/S0717-95022019000401409
Froese R, Pauly D. FishBase [Internet]. 2019. Disponible en: www.fishbase.org
Girardi SC, Pavanelli CS, Margarido VP. Contributions to the systematic of pimelodidae (Osteichthyes, Siluriformes): Basic and molecular cytogenetics on seven species of pimelodus from three Brazilian hydrographic systems. Neotrop Ichthyol. 2018;16(2): 170148. Disponible en: https://doi.org/10.1590/1982-0224-20170148
Sandoval Herrrera ID, Solarte Murillo LV. Caracterización citogenética y molecular de una población híbrida entre bagre Rayado (Pseudoplatystoma metaense) y bagre Yaque (Leiarius marmoratus). Universidad de los Llanos; 2019.
Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-sivan B. Regulation of Fish Gonadotropins. Int Rev Cytol. 2003;225: 131–85. Disponible en: https://doi.org/10.1016/S0074-7696(05)25004-0
Rocha MJ, Arukwe A, Kapoor BG. Fish reproduction. 1st ed. Science Publishers; 2008.
Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208(3–4): 191–364. Disponible en: https://doi.org/10.1016/S0044-8486(02)00057-1
Planas JV, Athos J, Goetz FW, Swanson P. Regulation of Ovarian Steroidogenesis in Vitro by Follicle-Stimulating Hormone and Luteinizing Hormone During Sexual Maturation in Salmonid Fish1. Biol Reprod. 2000;62(5): 1262-1269. Disponible en: https://academic.oup.com/biolreprod/article-lookup/doi/10.1095/biolreprod62.5.1262 https://doi.org/10.1095/biolreprod62.5.1262
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol. 2018;461: 236-247. Disponible en: http://www.sciencedirect.com/science/article/pii/S030372071730504X https://doi.org/10.1016/j.mce.2017.09.019
Akhtar M, Ciji A, Sarma D, Rajesh M, Kamalam B, Sharma P, et al. Reproductive dysfunction in females of endangered golden mahseer (Tor Putitora) in captivity. Anim Reprod Sci. 2017;182: 95–103. Disponible en: https://doi.org/10.1016/j.anireprosci.2017.05.004
Zanuy S, Carrillo M, Rocha A, Molés G. Regulación y control hormonal del proceso reproductor de los teleósteos. En: JE de los Monteros (ed.). La reproducción de los peces: aspectos básicos y sus aplicaciones en acuicultura. Madrid: Publicaciones Científicas de la Fundación Observatorio Español de Acuicultura; 2009. pp. 1-719.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2020. Disponible en: https://www.r-project.org/
Barcellos LJG, Woehl VM, Wassermann GF, Quevedo RM, Ittzés I, Krieger MH. Plasma levels of cortisol and glucose in response to capture and tank transference in Rhamdia quelen (Quoy & Gaimard), a South American catfish. Aquac Res. 2001;32(2): 121-123. Disponible en: https://doi.org/10.1046/j.1365-2109.2001.00539.x
Pankhurst NW, Sharpies DF. Effects of capture and confinement on plasma cortisol concentrations in the snapper, pagrus auratus. Mar Freshw Res. 1992;43(2): 345-356. Disponible en: https://doi.org/10.1071/MF9920345
Clearwater SJ, Pankhurst NW. The response to capture and confinement stress of plasma cortisol, plasma sex steroids and vitellogenic oocytes in the marine teleost, red gurnard. J Fish Biol. 1997;50(2): 429-441. Disponible en: https://doi.org/10.1111/j.1095-8649.1997.tb01370.x
Pottinger TG. Changes in blood cortisol, glucose and lactate in carp retained in anglers’ keepnets. J Fish Biol. 1998;53(4): 728–742. Disponible en: https://doi.org/10.1111/j.1095-8649.1998.tb01828.x
Lamba VJ, Goswami SV, Sundararaj BI. Circannual and circadian variations in plasma levels of steroids (cortisol, estradiol-17β estrone, and testosterone) correlated with the annual gonadal cycle in the catfish, Heteropneustes fossilis (Bloch). Gen Comp Endocrinol. 1983;50(2): 205-225. Disponible en: https://doi.org/10.1016/0016-6480(83)90221-6
Goos HJT, Consten D. Stress adaptation, cortisol and pubertal development in the male common carp, Cyprinus carpio. Mol Cell Endocrinol. 2002;197(1-2): 105-116. Disponible en: https://doi.org/10.1016/S0303-7207(02)00284-8
Small BC. Effect of dietary cortisol administration on growth and reproductive success of channel catfish. J Fish Biol. 2004;64(3): 589-596. Disponible en: https://doi.org/10.1111/j.1095-8649.2004.00322.x
Rodriguez-Pulido J, Villamil-Rodriguez J, Mira-López T, Cruz-Casallas P, Baldisserotto B. Gonadal Maturation in Pseudoplatystoma metaense × Leiarius marmoratus Hybrids, (Siluriformes: Pimelodidae) Maduración Gonadal en Híbridos de Pseudoplatystoma metaense X Leiarius marmoratus (Siluriformes: Pimelodidae). Int J Morphol. 2020;38(5): 1405-1411. Disponible en: https://doi.org/10.4067/S0717-95022020000501405
Mousavi S., Yousefian M. Effects of exogenous hormones on plasma cortisol, sex steroid hormone and glucose levels in male and female grass carp, Ctenopharyngodon idellus, during the spawning induction. African J Biotechnol. 2012;11(36): 8920-8927. Disponible en: https://doi.org/10.5897/AJB11.1789
Wingfield J., Grimm A. Seasonal change in plasma Cortisol, Testosterone and Oestradiol-17β in the Plaice, Pleuronectes platessa. Gen Comp Endocrinol. 1977;3: 1–11. Disponible en: https://doi.org/10.1016/0016-6480(77)90184-8
Chaube R, Mishra S, Singh RK. A comparison of steroid profiles in the testis and seminal vesicle of the catfish (Heteropneustes fossilis). Theriogenology. 2018;105: 90-96. Disponible en: https://doi.org/10.1016/j.theriogenology.2017.09.010
Passini G, Carvalho CVA, Sterzelecki FC, Baloi MF, Cerqueira VR. Spermatogenesis and steroid hormone profile in puberty of laboratory-reared common snook (Centropomus undecimalis). Aquaculture. 2019;1(500): 622-630. Disponible en: https://doi.org/10.1016/j.aquaculture.2018.10.031
Landines MA. Perfil de esteroides sexuales del capitán de la sabana (Eremophilus mutisii) durante un ciclo hidrológico completo. Rev UDC A Act Div. 2017;20(1): 43-50. Disponible en: https://doi.org/10.31910/rudca.v20.n1.2017.61
Singh VK, Lal B. Pro-steroidogenic and pro-spermatogenic actions of nitric oxide (NO) on the catfish, Clarias batrachus: An in vivo study. Gen Comp Endocrinol. 2017;242: 1-10. Disponible en: https://doi.org/10.1016/j.ygcen.2016.05.001
Ismail MFS, Siraj SS, Daud SK, Harmin SA. Association of annual hormonal profile with gonad maturity of mahseer (Tor tambroides) in captivity. Gen Comp Endocrinol. 2011;170(1): 125-130. Disponible en: https://doi.org/10.1016/j.ygcen.2010.09.021
Adebiyi F, Siraj S, Harmin S, Christianus A. Plasma sex steroid hormonal profile and gonad histology during the annual reproductive cycle of river catfish Hemibagrus nemurus (Valenciennes, 1840) in captivity. Fish Physiol Biochem. 2013;39: 547-557. Disponible en: https://doi.org/10.1007/s10695-012-9718-x
Barrero M, Small BC, D’Abramo LR, Hanson LA, Kelly AM. Comparison of estradiol, testosterone, vitellogenin and cathepsin profiles among young adult channel catfish (Ictalurus punctatus) females from four selectively bred strains. Aquaculture. 2007;264(1–4): 390–397. Disponible en: https://doi.org/10.1016/j.aquaculture.2006.12.003
Rodríguez-Pulido JA, Cruz-Casallas PE, Góngora-Orjuela A. Hibridización de silúridos: una alternativa para la piscicultura con alto riesgo para la conservación de las especies nativas. Orinoquia. 2016;20(1): 62-68. Disponible en: https://doi.org/10.22579/20112629.328
Chaube R, Mishra S, Singh RK. A comparison of steroid profiles in the testis and seminal vesicle of the catfish (Heteropneustes fossilis). Theriogenology. 2018;105: 90-96. Disponible en: https://doi.org/10.1016/j.theriogenology.2017.09.010
Sutthi N, Amornlerdpisan D, Chitmanat C, Mengumphan K. Annual Growth and Reproductive Performance in an F2 Catfish Hybrid. J Adv Agric Technol. 2014;1. Disponible en: https://doi.org/10.12720/joaat.1.2.113-118
Singh VK, Lal B. Pro-steroidogenic and pro-spermatogenic actions of nitric oxide (NO) on the catfish, Clarias batrachus: An in vivo study. Gen Comp Endocrinol. 2017;242: 1-10. Disponible en: https://doi.org/10.1016/j.ygcen.2016.05.001
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol. 2021;63(December 2020): 100928. Disponible en: https://doi.org/10.1016/j.yfrne.2021.100928
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, et al. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol. 2021;213(July): 105952. Disponible en: https://doi.org/10.1016/j.jsbmb.2021.105952
Ganesh CB. The stress – Reproductive axis in fish: The involvement of functional neuroanatomical systems in the brain. J Chem Neuroanat. 2021;112(November 2020): 101904. Disponible en: https://doi.org/10.1016/j.jchemneu.2020.101904