Relationship between BLV and sanitary problems in a specialized dairy herd in Antioquia

Abstract

Bovine leukemia virus (BLV) is a retrovirus whose target cell is B lymphocytes, which has a negative impact on the immune system of infected animals, making them more susceptible to other diseases of infectious origin. The objective of this work was to carry out a sanitary study of infectious diseases in a specialized dairy herd in the department of Antioquia and to analyze their possible association with BLV infection. 87 blood samples were taken from Holstein Friesian cows to which an indirect ELISA was performed for the gp51 protein of the virus. The presence/absence data for three diseases (anaplasmosis, mastitis and metritis) and the fever sign were recorded for each of the bovines analyzed during the period of time from 2006 to 2014. The data was analyzed through 2x2 contingency tables and Odds Ratio (OR). The serological prevalence of BLV in the herd was 82.75% and the presentation of diseases during the years 2006 and 2014 was 38.27% for mastitis, 19.58% for anaplasmosis, 15.13% for metritis and 27% for fever. According to the magnitude of effect for the OR, it was found that in general the BLV seroprevalence has an insignificant association with the diseases; however, a moderate association with the fever sign was recorded. Fever is a sign that is associated with infections and it is possible that the decreased immune response to BLV is correlated with the presentation of other infectious diseases.
PDF (Spanish)

References

Gobernación de Antioquia. Anuario Estadístico de Antioquia. [Internet]; 2023 [citado junio 5 de 2023]. Disponible en: https://shorturl.at/exRV7

Instituto Colombiano Agropecuario. Censo Pecuario Nacional. Minagricultura. [Internet]; 2023 [citado junio 5 de 2023]. Disponible en: https://shorturl.at/fiHS2

Polat M, Takeshima S, Hosomichi K, Kim J, Miyasaka T, Yamada K, et al. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology. 2016;13(1). Disponible en: https://doi.org/10.1186/s12977-016-0239-z

Kuczewski A, Orsel K, Barkema HW, Mason S, Erskine R, van der Meer F. Invited review: Bovine leukemia virus Transmission, control, and eradication. J Dairy Sci. 2021;104(6):6358–6375. Disponible en: https://doi.org/10.3168/jds.2020-18925

Chaparro J, Olivera-Angel M, Luis P, Villar D, Ramírez N. Neospora caninum serostatus in dairy cattle of the Northern plains of Antioquia, Colombia. Rev MVZ Córdoba. 2016;21(3):5577–5583.

Emanuelson U, Scherlin, K, Pettersson H. Relationships between herd bovine leukemia virus infection status and reproduction, disease incidence, and productivity in Swedish dairy herds. Prev Vet Med. 1992;12(1–2):121–131. Disponible en: https://doi.org/10.1016/0167-5877(92)90075-Q

Otta SL, Johnson R, Wells SJ. Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev Vet Med. 2003;61(4), 249–262. Disponible en: https://doi.org/10.1016/j.prevetmed.2003.08.003

Cora Ibarra JF, Lloberas MM, Llada I M, Odriozola ER, Cantón G. Anaplasmosis bovina en provincia de Buenos Aires durante 2015. Rev Investig Agropecu. 2021;47(1):98-103.

Vanzini VR, Ramírez LM. Babesiosis y anaplasmosis bovina. Diagnóstico, epidemiologia y control. INTA-Argentina RIA. 1994;25(3), 137-190.

Lozina L, Torioni ES, Barbieri F, del Río F, Ríos EE. Evaluación de la actividad inmunogénica de una vacuna para profilaxis de la anaplasmosis bovina. Revista Veterinaria. 2019;30(1):3-6. Disponible en: http://dx.doi.org/10.30972/vet.3013875

Landázuri Rafael TH, Carrazco A, León R, Vinueza L, Barragán V. Optimización de un protocolo de extracción de ADN a partir de sangre bovina hemolizada y coagulada para la detección molecular de Anaplasma spp. Rev Mex Cienc Pecu. 2021;12(2):653-664. Disponible en: https://doi.org/10.22319/rmcp.v12i2.5635

Mera Andrade R, Muñoz Espinoza M, Artieda Rojas J, Ortiz Tirado P, González Salas R, Vega Falcón V. Mastitis bovina y su repercusión en la calidad de la leche. Rev Electron Vet. 2017;18(11):1-16.

Jiménez Galán LM. La mastitis bovina. Profesión Veterinaria. 2019;23(92):30-33.

Rosero EM, Montenegro DJ, Abad RJ, Ordoñez DS. Mastitis bovina en el cantón Montufar–Carchi. Prevalencia, agente causal y factores de riesgo. Axioma. 2022;1(26):5-10.

Ruiz A, Peña J, Remón D. Mastitis bovina en Cuba. Rev Prod Anim. 2016;28(2-3):39-50. Disponible en: https://shorturl.at/cdsMR

Ministerio de Agricultura y Desarrollo Rural. Resolución 000017. “Por la cual se establece el sistema de pago de la Leche Cruda al Proveedor”. [Internet]; 2023 [citado junio 5 de 2023]. Disponible en: https://shorturl.at/lzJP3

Risco C. Diagnosis and therapeutic considerations of uterine infections in dairy cattle. Rev Med Vet Zoot. 2009;56(3):253-257. Disponible en: https://shorturl.at/cjlq1

Neira Sánchez PL, Zambrano Neira DA. Actualidad en ginecología y obstetricia en bovinos. [Internet]; 2023 [citado junio 5 de 2023]. Disponible en: https://shorturl.at/ekvwZ

Borle C, Agüero H, Morales MA, Kruze J, León B, San Martín B. Etiología de metritis bovina en rebaños lecheros de las Regiones V y Metropolitana (Chile) y resistencia bacteriana frente a diferentes antimicrobianos. Avances en Ciencias Veterinarias. 2004;19(1-2):1-8.

Cohen J. Statistical power analysis for the behavioral sciences. 2 ed. Erlbaum; 1988.

Rhodes JK, Pelzer KD, Johnson YJ. Economic implications of bovine leukemia virus infection in mid-Atlantic dairy herds. J Am Vet Med Assoc. 2003;223(3):346-352. Disponible en: https://doi.org/10.2460/javma.2003.223.346

Corredor-Figueroa AP, Salas S, Olaya-Galán NN, Quintero JS, Fajardo Á, Soñora M, et al. Prevalence and molecular epidemiology of bovine leukemia virus in Colombian cattle. Infect Genet Evol. 2020;80:104171. Disponible en: https://doi.org/10.1016/j.meegid.2020.104171

Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, et al. Bovine leukaemia virus: Current epidemiological circumstance and future prospective. Viruses. 2021;13(11):2167. Disponible en: https://doi.org/10.3390/v13112167

Instituto Colombiano Agropecuario. Resolución 003714. “Por la cual se establecen las enfermedades de declaración obligatoria en Colombia”. [Internet]; 2023 [citado junio 5 de 2023]. Disponible en: https://shorturl.at/amTY3

Konnai S, Usui T, Ikeda M, Kohara J, Hirata T, Okada K, et al. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection. Virology. 2005;339(2):239-248. Disponible en: https://doi.org/10.1016/j.virol.2005.06.010

Schroder K, Hertzog P, Ravasi T, Hume D. Interferon‐γ: An overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163-189. Disponible en: https://doi.org/10.1189/jlb.0603252

Nieto M, Lendez P, Quintana S, Martínez-Cuesta L, Ceriani C, Dolcini G. Toll-like receptors, IFN-γ and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load. Res Vet Sci. 2016;107:190-195. Disponible en: https://doi.org/10.1016/j.rvsc.2016.06.016

Pyeon D, O’Reilly K, Splitter G. Increased interleukin-10 mRNA expression in tumor bearing or persistently lymphocytotic animals infected whit bovine leukemia virus. J Virol. 1996;70(8):5706-5710. Disponible en: https://doi.org/10.1128/JVI.70.8.5706-5710.1996.

Curtis AK, Coetzee JF. Assessment of within-herd seroprevalence of Anaplasma marginale antibodies and associated decreased milk production in an Iowa dairy herd. App Anim Sci. 2021;37(2):126-131. Disponible en: https://doi.org/10.15232/aas.2020-02110

Ikebuchi R, Konnai S, Okagawa T, Nishimori A, Nakahara A, Murata S, et al. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J Gen Virol. 2014;95(8):1832-1842. Disponible en: https://doi.org/10.1099/vir.0.065011-0

Okagawa T, Konnai S, Deringer JR, Ueti MW, Scoles GA, Murata S, Ohashi K, Brown WC. Cooperation of PD-1 and LAG3 contributes to T-cell exhaustion in Anaplasma marginale infected cattle. Infect Immun. 2016;84(10):2779-2790. Disponible en: https://doi.org/10.1128/iai.00278-16

Konnai S, Murata S, Ohashi K. Immune exhaustion during chronic infections in cattle. J Vet Med. 2017;79(1):1-5. Disponible en: https://doi.org/10.1292/jvms.16-0354

Bojarojć-Nosowicz B, Kaczmarczyk E. Somatic cell count and chemical composition of milk in naturally BLV-infected cows with different phenotypes of blood leukocyte acid phosphatase. Arch Anim Breed. 2006;49(1):17-28. Disponible en: https://doi.org/10.5194/aab-49-17-2006

Nakada S, Fujimoto Y, Kohara J, Makita K. Economic losses associated with mastitis due to bovine leukemia virus infection. J Dairy Sci. 2023;106(1):576-588. Disponible en: https://doi.org/10.3168/jds.2021-21722

Ambrósio NA, Hirsch C, Rocha CM, Bruhn FR, Lima MT, da Costa Custódio, et al. Intercurrence between bovine leukosis virus infection and mastitis in dairy cattle. Semina. 2021;42(2):3777-3792. Disponible en: https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3777

Watanabe A, Murakami H, Kakinuma S, Murao K, Ohmae K, Isobe N, et al. Association between bovine leukemia virus proviral load and severity of clinical mastitis. J Vet Med. 2019;81(10):1431-1437. Disponible en: https://doi.org/10.1292/jvms.19-0285

Yoon S, Bae Y, Lee K, Han B. Characteristics of bovine lymphoma caused by bovine leukemia virus infection in Holstein-Friesian dairy cattle in Korea. Asian-Aust J Anim Sci. 2005;18(5):728-733. Disponible en: https://doi.org/10.5713/ajas.2005.728

Takeuchi T, Yoshimoto K, Komagata M, Fukunaka M, Kobayashi Y, Matsumoto K, et al. A case of bovine leukosis with chronic endometritis in a Holstein cow. Jpn J Vet Med Sci. 2011;64(9):708-711. Disponible en: https://doi.org/10.12935/jvma.64.708

Haidar G, Singh N. Fever of unknown origin. N Engl J Med. 2022;386(5):463-477. Disponible en: https://doi.org/10.1056/NEJMra2111003

Keywords

Infectious diseases
Holstein
seroprevalence
immune response