Olival KJ, Cryan PM, Amman BR, Baric RS, Blehert DS, Brook CE, et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog. 2020;16(9): e1008758. Disponible en: https://doi.org/10.1371/journal.ppat.1008758
United Nations Environment Programme and International Livestock Research Institute. Preventing the next pandemic: Zoonotic diseases and how to break the chain of transmission. Nairobi: United Nations Environment Programme and International Livestock Research Institute; 2020.
Valente M, Trentin M, Ragazzoni L, Barone-Adesi F. Aligning disaster risk reduction and climate change adaptation in the post-COP26 era. The Lan Planet Heal. 2022;6(2): e76-e77. Disponible en: https://doi.org/10.1016/S2542-5196(22)00013-4
WWF. Informe Planeta Vivo. WWF; 2020. Disponible en: https://www.wwf.org.co/sala_redaccion/especiales/informe_planeta_vivo/
Rüegg SR, McMahon BJ, Häsler B, Esposito R, Rosenbaum L, Ifejika C, et al. A Blueprint to Evaluate One Health. Fro Pub Heal. 2017;5(20). Disponible en: https://doi.org/10.3389/fpubh.2017.00020
WHO/FAO/OIE/UNEP. Tripartite and UNEP support OHHLEP's definition of "One Health". WHO/FAO/OIE/UNEP; 2021. Disponible en: https://www.who.int/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-sdefinition-of-one-health
Hitziger M, Esposito R, Canali M, Aragrande M, Häslerd B, Rüegg S. Knowledge integration in One Health policy formulation, implementation and evaluation. B W Heal Org. 2018;96(3): 211-218. Disponible en: https://doi.org/10.2471/BLT.17.202705
Perrone G, Ferrara M, Medina A, Pascale M, Magan N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms. 2020;8(10): 1496. Disponible en: https://doi.org/10.3390/microorganisms8101496
Liu C, Fels-Klerx V. Quantitative modeling of climate change impacts on mycotoxins in cereals: A review. Toxins. 2021;13(4): 276. Disponible en: https://doi.org/10.3390/toxins13040276
Cartín-Rojas A, Pascual A. Alimentos de origen animal y enfermedades de transmisión alimentaria en Costa Rica: 2015-2020. UNED Res Jour. 2021;13(2): e3587-e3587. Disponible en: https://revistas.uned.ac.cr/index.php/cuadernos/article/download/3587/4967?inline=1
Botana LM. Toxicological perspective on climate change: aquatic toxins. Chem Res Toxic. 2016;29(4): 619-625. Disponible en: https://doi.org/10.1021/acs.chemrestox.6b00020
Käse L, Geuer JK. Phytoplankton responses to marine climate change–an introduction. En: YOUMARES 8–oceans across boundaries: learning from each other. Proceedings of the 2017 conference for YOUng MARine RESearchers in Kiel, Germany. Kiel, Germany: German Society for Marine Research; 2018. p. 55-71.
Marcogliese DJ. The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech. 2008;27(2): 467-484. Disponible en: https://doi.org/10.20506/RST.27.2.1820
Utaaker KS, Robertson LJ. Climate change and foodborne transmission of parasites: A consideration of possible interactions and impacts for selected parasites. Food Res Internat. 2015;68: 16-23. Disponible en: https://doi.org/10.1016/j.foodres.2014.06.051
Singer RS, Finch R, Wegener HC, Bywater R, Walters J, Lipsitch M. Antibiotic resistance—the interplay between antibiotic use in animals and human beings. The Lanc Infect Dise. 2003;3(1): 47-51. Disponible en: https://doi.org/10.1016/s1473-3099(03)00490-0
Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Envir Pollut. 2009;157(11): 2893-2902. Disponible en: https://doi.org/10.1016/j.envpol.2009.05.051
Schulz-Bañares B, Sandoval-Cifuentes C, Sandoval-Quijada T, Muller-Ramírez C. Residuos farmacéuticos domiciliarios en el medio ambiente: de la preocupación a la acción. Rev Panam Salud Públ. 2021;45: e155. Disponible en: https://doi.org/10.26633/RPSP.2021.155
INFAC. Farmacontaminación. Impacto ambiental de los medicamentos. Inform Farmaco Com. 2016;24(10). Disponible en: https://files.sld.cu/medicamentos/files/2017/01/INFAC_Vol_24_n_10_farmacontaminacion.pdf
Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 2004;427(6975): 630-633. Disponible en: https://doi.org/10.1038/nature02317
Triebskorn R, Casper H, Scheil V, Schwaiger J. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Analy Bioanaly Chem. 2007;387(4): 1405-1416. Disponible en: https://doi.org/10.1007/s00216-006-1033-x
Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, et al. Collapse of a fish population after exposure to a synthetic estrogen. Proceed Nat Acad Sciences. 2007;104(21): 8897-8901. Disponible en: https://doi.org/10.1073/pnas.0609568104
Michelini L, Reichel R, Werner W, Ghisi R, Thiele-Bruhn S. Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants. Wat Air Soil Poll. 2012;223(8): 5243-5257. Disponible en: https://doi.org/10.1007/s11270-012-1275-5
Gil MJ, Soto AM, Usma JI, Gutiérrez OD. Contaminantes emergentes en aguas, efectos y posibles tratamientos. Prod Limp. 2012;7(2): 52-73. Disponible en: http://www.scielo.org.co/pdf/pml/v7n2/v7n2a05.pdf
Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, Galbán-Malagón C, et al. Pharmaceutical pollution of the world's rivers. Proc Natl Acad Sci USA. 2022;119(8): e2113947119. Disponible en: https://doi.org/10.1073/pnas.2113947119
Manzo V, Goya-Pacheco J, Arismendi D, Becerra-Herrera M, Castillo-Aguirre A, Castillo-Felices R, et al. Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Analy Chi Act. 2019;1087(9): 1-10. Disponible en: https://doi.org/10.1016/j.aca.2019.08.069
Daniels PL. Climate Change, Economics and Buddhism — Part I: An Integrated Environmental Analysis Framework. Ecol Econ. 2010;69(5): 952-961. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0921800909005035
UNDP. Tras la Huellas del Cambio Climático en Bolivia. Adaptación en Agua y Seguridad Alimentaria, Bolivia. La Paz: UNDP; 2011.
Nightingale AJ. The nature of gender: work, gender, and environment. Environ Plan Soci Spa. 2006;24: 165-185. Disponible en: https://doi.org/10.1068/d01k
Cediel Becerra N, Morales P. Equidad de género en la tenencia y control de la tierra en Colombia: llamado a una acción emancipatoria. Rev Med Vet. 2018;(37): 7-12. Disponible en: https://doi.org/10.19052/mv.vol1.iss37.1
Granados Martínez A. Vulnerabilidad social por género: riesgos potenciales ante el cambio climático en México. Letr Ver Rev Lat Est Socioamb. 2017;(22): 274-296. Disponible en: https://doi.org/10.17141/letrasverdes.22.2017.2720.
Laska S, Hearn Morrow B, Willinger B, Mock N. Gender and Disasters: Theoretical Considerations. En: Willinger B (ed.) Katrina and the Women of New Orleans. New Orleans: Tulane University – University of New Orleans; 2008.
FAO. The State of Food and Agriculture 2010-11. GreenStream/Ministry for Foreign Affairs of Finland Report: Gender and the Clean Development Mechanism (CDM). Opportunities for CDM to Promote Local Positive Gender Impacts. FAO; 2010.
Cediel-Becerra NM, Prieto-Quintero S, Garzón ADM, Villafañe-Izquierdo M, Rúa-Bustamante CV, Jiménez N, et al. Woman-Sensitive. One Health Perspective in Four Tribes of Indigenous People From Latin America: Arhuaco, Wayuú, Nahua, and Kamëntsá. F Pub Heal. 2022;(10): 774713. Disponible en: https://doi.org/10.3389/fpubh.2022.774713
Bryan E, Bernier Q, Espinal M, Ringler C. Integrating Gender into Climate Change Adaptation Programs: A Research and Capacity Needs Assessment for Sub-Saharan Africa. CCAFS Working Paper no. 163. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2016.
Cowie RH, Bouchet P, Fontaine B. The Sixth Mass Extinction: fact, fiction or speculation? Biol Rev Camb Philos Soc. 2022;97(2): 640-663. Disponible en: https://doi.org/10.1111/brv.12816
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci Adv. 2015;1(5): e1400253. Disponible en: https://doi.org/10.1126/sciadv.1400253
Rockstrom J, Steffen W, Noone K, Persson A, Chapin III FS, Lambin EF. A safe operating space for humanity: identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues. Nature. 2009;461(7263): 472-476. Disponible en: https://www.nature.com/articles/461472a
Scholes RJ, Montanarella L, Brainich E, Brainich E, Barger N, Brink B, et al. (eds.). IPBES: Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science - Policy Platform on Biodiversity and Ecosystem Services. Intergovernmental Science - Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES; 2018. Disponible en: https://www.ipbes.net/system/tdf/spm_3bi_ldr_digital.pdf?file=1&type=node&id=28335
Maxwell SL, Fuller RA, Brooks TM, Watson JE. Biodiversity: the ravages of guns, nets and bulldozers. Nature. 2016;536(7615): 143-145. Disponible en: https://doi.org/10.1038/536143a
Román-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proceed Nati Acad Sci. 2020;117(8): 4211-4217. Disponible en: https://doi.org/10.1073/pnas.1913007117
Mo M, Roache M, Davies J, Hopper J, Pitty H, Foster N, et al. Estimating flying-fox mortality associated with abandonments of pups and extreme heat events during the austral summer of 2019–20. Pac Conserv Biol. 2022;28: 124-139. Disponible en: https://doi.org/10.1071/PC21003
Welbergen JA, Booth C, Martin J. Killer climate: tens of thousands of flying foxes dead in a day. The Conversation [Internet]. 2014 Feb 24. Disponible en: https://theconversation.com/killer-climate-tens-of-thousands-of-flying-foxes-dead-in-a-day-23227
Cleveland S, Laurenson MK, Taylor MH. Diseases of humans and their domestic animals: Pathogen characteristics, host range and the risk of emergence. Phil Trans R Soc Lond B. 2001;356(1411): 991-999. Disponible en: https://doi.org/10.1098/rstb.2001.0889
Woolhouse MEJ. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 2002;10(10 Suppl): 3-7. Disponible en: https://doi.org/10.1016/s0966-842x (02)02428-9
Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature. 2004;430(6996): 242-249. Disponible en: https://doi.org/10.1038/nature02759
Dash SP, Dipankar P, Burange PS, Rouse BT, Sarangi PP. Climate change: how it impacts the emergence, transmission, resistance and consequences of viral infections in animals and plants. Crit Rev Micro. 2021;47(3): 307-322. Disponible en: https://doi.org/10.1080/1040841X.2021.1879006
Liao W, Atkinson CT, LaPointe DA, Samuel MD. Mitigating Future Avian Malaria Threats to Hawaiian Forest Birds from Climate Change. PloS One. 2017;12(1): e0168880. Disponible en: https://doi.org/10.1371/journal.pone.0168880
Colón-González FJ, Sewe MO, Tompkins AM, Sjödin H, Casallas A, Rocklöv J et al. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multiscenario intercomparison modelling study. T Lan Plan Heal. 2021;5(7): e404-e414. Disponible en: https://doi.org/10.1016/S2542-5196(21)00132-7
Aquino Rojas E, Rojas Cortez M, Espinoza J, Vallejo E, Lozano D, Torrico F. Caracterización de la infestación de viviendas por Aedes aegypti en el área metropolitana de Cochabamba, Bolivia: nuevos registros altitudinales. Gac Méd Boliv. 2016;39(2): 83-87. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1012-29662016000200005&lng=es&tlng=es
Opinión. 80% de casos de dengue está en El Trópico. Opinión [Internet]. 2021 Nov 9 [citado en 2022 Mar 28]. Disponible en: https://www.opinion.com.bo/articulo/cochabamba/80-casos-dengue-tropico/20211109000409842375.html
Redacción Central. Cochabamba, a punto de un brote de dengue por proliferación de mosquitos. Tiempos [Internet]. 2021 Nov 16 [citado en 28 de marzo de 2022]. Disponible en: https://www.lostiempos.com/actualidad/cochabamba/20211116/cochabamba-punto-brote-dengue-proliferacion-mosquitos
Schumann G, D’Arcy C. Essential plant pathology. St Paul, Minnesota: The American Phytopathological Society (APS) Press; 2006.
Fletcher J, Franz D, LeClerc JE. Healthy plants: necessary for a balanced ‘One Health’ concept. Vet Ital. 2009;45(1): 79-95.
Hull R. Behavior of the ordinary tobacco mosaic. Jour Agric Res. 2013;52: 271.
Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian A, Adriaenssens E, Dempsey D, et al. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Arch Virol. 2020;165: 2737-2748. Disponible en: https://doi.org/10.1007/s00705-020-04752-x
Newbery F, Qi A, Fitt BD. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr O Plant Bio. 2016;32: 101-109. Disponible en: https://doi.org/10.1016/j.pbi.2016.07.002
Trębicki P, Nancarrow N, Cole E, Bosque-Pérez NA, Constable FE, Freeman A, et al. Virus disease in wheat predicted to increase with a changing climate. Glob Ch Bio. 2015;21(9): 3511-3519. Disponible en: https://doi.org/10.1111/gcb.12941
Trębicki P, Vandegeer RK, Bosque-Pérez NA, Powell KS, Dader B, Freeman A, et al. Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci Rep. 2016;6(1): 1-11. Disponible en: https://doi.org/10.1038/srep22785
Jones RAC. Future scenarios for plant virus pathogens as climate change progresses. Adv Vir Res. 2016;95: 87-147. Disponible en: https://doi.org/10.1016/bs.aivir.2016.02.004
Jones RA. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Vir Res. 2009;141(2): 113-130. Disponible en: https://doi.org/10.1016/j.virusres.2008.07.028
Lin B, Dietrich ML, Senior RA, Wilcove DS. A better classification of wet markets is key to safeguarding human health and biodiversity. T Lanc Planet H. 2021;5(6): e386-e394. Disponible en: https://doi.org/10.1016/S2542-5196(21)00112-1
Platto S, Xue T, Carafoli E. COVID19: an announced pandemic. C Death Dis. 2020;11(799): 1-13. Disponible en: https://www.nature.com/articles/s41419-020-02995-9
Noss RF. Indicators for monitoring biodiversity: a hierarchical approach. Conserv Bio. 1990;4(4): 355-364.
Romanelli C, Cooper HD, De Souza Dias BF. The integration of biodiversity into One Health. Rev Sci Tech. 2014;33(2): 487-496. Disponible en: https://doi.org/10.20506/rst.33.2.2291
Leigh C, Boulton AJ, Courtwright JL, Fritz K, May CL, Walker RH, et al. Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biol. 2016;61(8): 1181-1199. Disponible en: https://doi.org/10.1111/fwb.12646
Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêgue C, et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev. 2006;81: 163-182. Disponible en: https://doi.org/10.1017/S1464793105006950
Datry T, Bonada N, Heino J. Towards understanding the organization of metacommunities in highly dynamic ecological systems. Oikos. 2016;125(2): 149-159. Disponible en: https://doi.org/10.1111/oik.02922
Datry T, Boulton AJ, Bonada N, Fritz K, Leigh C, Sauquet E, et al. Flow intermittence and ecosystem services in rivers of the Anthropocene. J Appl Ecol. 2017;55(1): 1-12. Disponible en: https://doi.org/10.1111/1365-2664.12941
Sanchez-Montoya MM, Tockner K, von Schiller D, Minano J, Catarineu Ch, Lencina JL, et al. Dynamics of ground-dwelling arthropod metacommunities in intermittent streams: The key role of dry riverbeds. Biol Conserv. 2020;241(5): 108328. Disponible en: https://doi.org/10.1016/j.biocon.2019.108328
Resh VH, Brown AV, Covich AP, Gurtz ME, Minshall GW, Reice SR, et al. Wissmar. The role of disturbance in stream ecology. J N Am Benthol Soc. 1988;7: 433-455.