Efecto de la edad del toro sobre la proporción de cromosomas X e Y en los espermatozoides

Abstract

The reproductive efficiency improvements that can be achieved in bovine herds highly depend on the male, as the bulls account for approximately 80% of the gene pool. Likewise, age can impact the sires’ reproductive efficiency through its seminal quality, which is strongly influenced by the bull’s sexual maturity. The study aimed to assess the bull’s age effect on the X and Y chromosomes-bearing spermatozoa ratio in semen. Sixteen Brahman bulls (Bos indicus) were grouped into two age range and their reproductive capacity was assessed. Genomic DNA was extracted from a single collection of semen to quantify by qPCR (quantitative polymerase chain reaction) the PLP and SRY genes, used as sexual chromosome markers, and autosomal GAPDH as the reference gene. The values obtained were compared using the delta Ct (2-∆Ct) method and validated with the use of a commercial sample of semen sexed for the X chromosome. The SRY gene had a proportion of 43% in bulls of 4-5 years of age and 32% in the group of 9-10 years, while the proportions of the PLP gene were 57% in bulls of 4-5 years and 68% in the 9-10 years group. This deviation from the expected ratio (1:1) in bulls of nine and ten years old with a preponderance of the X chromosome content might suggest a possible influence of age in the sex chromosome proportions in the spermatozoa; however, these results were not statistically significant.
PDF

References

Taylor JF, Schnabel RD, Sutovsky P. (2018). Genomics of bull fertility. Animal. 2018;12(s1):s172-83. https://doi.org/10.1017/S1751731118000599

Seidel Jr GE. Economics of selecting for sex: The most important genetic trait. Theriogenology. 2003;59:585-98. https://doi.org/10.1016/s0093-691x(02)01242-6

Garner DL, Evans KM, Seidel GE. Sex-sorting sperm using flow cytometry/cell sorting. Methods Mol Biol. 2013;927:279-95. https://doi.org/10.1007/978-1-62703-038-0_26

Khamlor T, Pongpiachan P, Sangsritavong S, Chokesajjawatee N. Determination of sperm sex ratio in bovine semen using multiplex real-time polymerase chain reaction. Asian-Australas J Anim Sci. 2014; 27:1411-6. https://doi.org/10.5713/ajas.2014.14223

Tan YJ, Mohanem MN, Somany WWMZ. SYBR® Green quantitative PCR for sex determination of bovine spermatozoa. J Trop Agric and Fd Sc. 2015;43:29-39; [cited 2018 Feb 16]. Available from: http://jtafs.mardi.gov.my/jtafs/43-1/SYBR.pdf

Atencio A. Brahman en Venezuela: pasado, presente y porvenir de la raza. XI Seminario Manejo y Utilización de Pastos y Forrajes en Sistemas de Producción Animal, Universidad Centro occidental "Lisandro Alvarado”, Venezuela. 69:65-77; [cited 2018 Feb 13]. Available from: http://avpa.ula.ve/eventos/xi_seminario/Conferencias/Articulo-7.pdf

Boggio JC. Evaluación de la aptitud reproductiva potencial y funcional del toro. Capacidad de servicio [Internet]. Chile: Universidad Austral de Chile; 2007; [cited 2018 Feb 20]. Available from: http://www.biblioteca.uach.cl/biblioteca_virtual/libros/2007/636.20824BOG.pdf

Kutz B. Beef cattle selection and genetics [Internet]. Little Rock (AR): University of Arkansas, Division of Agriculture, Research and Extension; 2018 [updated 2023; cited 2018 March 9]. Available from: https://www.uaex.uada.edu/farm-ranch/animals-forages/beef-cattle/breeding-genetic-selection.aspx

Páez-Barón EM, Corredor-Camargo ES. Evaluación de la aptitud reproductiva del toro. Ciancia y Agricultura. 2014;11:49-59; [cited 2018 March 9] Available from: https://www.redalyc.org/articulo.oa?id=560058659007

Aponte PM, de Rooij DG, Bastidas P. Testicular development in Brahman bulls. Theriogenology. 2005;64:1440-55. https://doi.org/10.1016/j.theriogenology.2005.03.016

Murphy EM, Kelly AK, O’Meara C, Eivers B, Lonergan P, & Fair S. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. Journal of Animal Science. 2018; 96(6), 2408-18. https://doi.org/10.1093/jas/sky130

Chandler JE, Canal AM, Paul JB, Moser EB. Collection frequency affects percent Y-chromosome bearing sperm, sperm head area and quality of bovine ejaculates. Theriogenology. 2002;57:1327-46. https://doi.org/10.1016/S0093-691X(01)00721-X

Kholghi M, Rostamzadeh J, Razmkabir M, & Heidari F. Blood testosterone level affects sex ratio of bull semen. Concepts of Dairy & Veterinary Sciences, 2020; 4, 363-9.

Firman RC, Tedeschi JN, Garcia-Gonzalez F. Sperm sex ratio adjustment in a mammal: perceived male competition leads to elevated proportions of female-producing sperm. Biol Lett. 2020; 16: 20190929. http://dx.doi.org/10.1098/rsbl.2019.0929.

Rorie RW, Delgado PA, & Lester TD. Variation among beef bulls in the ratio of X-to Y-chromosome bearing spermatozoa. Advances in Reproductive Sciences, 2014;2(04),69. https://doi.org/10.4236/arsci.2014.24008

Arieta RJ, Fernández JA, Menchaca PJ. Métodos de extracción de semen bovino. Revista Electrónica de Veterinaria 2014;15:1-8; [cited 2018 Nov 22]. Available from: https://www.redalyc.org/articulo.oa?id=63633881001

Chenoweth PJ, McPherson FJ. Bull breeding soundness, semen evaluation and cattle productivity. Animal Reproduction Science, 2016. http://dx.doi.org/10.1016/j.anireprosci.2016.03.001

Chenoweth PJ, Hopkins FM, Spitzer JC, & Larson RE. New guidelines for the evaluation of bulls for breeding soundness. In American Association of Bovine Practitioners Proceedings of the Annual Conference, (1993, September); (pp. 105-107).

Lahiri DK, Numberger JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research. 1991;19:5444. https://doi.org/10.1093/nar/19.19.5444

Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262

Sokal RR, Rohlf FJ. Biometría: Principios y métodos estadísticos en la investigación biológica. Madrid: Blume; 1979.

Mathevon M, Buhr MM, Dekkers JCM. Environmental, management, and genetic factors affecting semen production in Holstein bulls. J Dairy Sci. 1998; 81:332130. https://doi.org/10.3168/jds.S0022-0302(98)75898-9

Staub C, Johnson L. Review: Spermatogenesis in the bull. Animal 2018;12(s1): s27-s35. https://doi.org/10.1017/S1751731118000435

Lone SA, Paray AR, Mir SH, Ganaie BA, Sinha R, Singh P. Breeding soundness evaluation in bulls: A Review. Biomed J Sci & Tech Res 2017;1:1267-70. http://doi.org/10.26717/BJSTR.2017.01.000415

Chandler JE, Steinholt-Chenervet HC, Adkinson RW and Moser EB. Sex ratio variation between ejaculates within sire evaluated by polymerase chain reaction, calving, and farrowing records. J Dairy Sci, 1998;81,1855-67. https://doi.org/10.3168/jds.S0022-0302(98)75756-X

Szyda J, Simianer H, Lien S. Sex ratio distortion in bovine sperm correlates to recombination in the pseudoautosomal region. Genet Res. 2000;75:53-9. https://doi.org/10.1017/S0016672399004085

Petronczki M, Siomos MF, Nasmyth K. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 2003;112:423-40. https://doi.org/10.1016/S0092-8674(03)00083-7

Rahman MS, & Pang MG. New biological insights on X and Y chromosome-bearing spermatozoa. Front Cell Dev Biol, 2020;7,388. https://doi.org/10.3389/fcell.2019.00388

Keywords

Bovine sexual chromosomes
X and Y chromosomes ratio
GAPDH
PLP
SRY
Brahman bulls