Revista de Medicina Veterinaria

Volume 1 | Number 27

Article 5

January 2014

Valores de referencia de gases arteriales y de electrolitos en caninos de la sabana de Bogotá

Carlos Andrés Trujillo Jurado Universidad de La Salle, catrujillo@unisalle.edu.co

Ernesto Andrés Dalmau Barros Universidad de La Salle, edalmau@unisalle.edu.co

Carlos Alberto Venegas Cortés Universidad de La Salle, cavenegas@unisalle.edu.co

César Augusto Díaz Rojas Universidad de La Salle, ceadiaz@unisalle.edu.co

Follow this and additional works at: https://ciencia.lasalle.edu.co/mv

Citación recomendada

Trujillo Jurado CA, Dalmau Barros EA, Venegas Cortés CA y Díaz Rojas CA. Valores de referencia de gases arteriales y de electrolitos en caninos de la sabana de Bogotá. Rev Med Vet. 2014;(27): 59-71. doi: https://doi.org/10.19052/mv.3024

This Artículo de Investigación is brought to you for free and open access by the Revistas científicas at Ciencia Unisalle. It has been accepted for inclusion in Revista de Medicina Veterinaria by an authorized editor of Ciencia Unisalle. For more information, please contact ciencia@lasalle.edu.co.

Valores de referencia de gases arteriales y de electrolitos en caninos de la sabana de Bogotá*

Carlos Andrés Trujillo Jurado¹ / Ernesto Andrés Dalmau Barros² / Carlos Alberto Venegas Cortés³ / César Augusto Díaz Rojas⁴

- * Artículo definitivo del trabajo parcial presentado en calidad póster en el Primer Encuentro de Investigadores, Facultad de Ciencias Agropecuarias y Recursos Naturales, Unillanos, 22 y 23 de agosto del 2013.
- Médico veterinario, Universidad de La Salle, Bogotá, Colombia. Magíster en Ciencias Veterinarias, Universidad de La Salle. Profesor de Fisiología y Medicina Interna de Pequeños Animales, Universidad de La Salle.

 ⊆ catrujillo@unisalle.edu.co
- 2 Médico veterinario, Universidad de La Salle, Bogotá, Colombia. Magíster en Salud y Producción Animal Universidad Nacional de Colombia. Profesor de Fisiología y Farmacología, Universidad de La Salle.
 - ⊠ edalmau@unisalle.edu.co
- 3 Médico veterinario, Universidad de La Salle, Bogotá, Colombia. Especialista en Docencia Universitaria. Profesor de Anatomía, Universidad de La Salle. ⋈ cavenegas@unisalle.edu.co
- 4 Médico veterinario, Universidad de La Salle, Bogotá, Colombia. Magíster en Reproducción Animal Universidad Nacional de Colombia. Doctorado en Ciencias de la Salud Animal, Universidad Nacional de Colombia. Profesor de Microbiología.

□ ceadiaz@unisalle.edu.co

Cómo citar este artículo: Trujillo Jurado CA, Dalmau Barros EA, Venegas Cortés CA, Díaz Rojas CA. Valores de referencia de gases arteriales y de electrolitos en caninos de la sabana de Bogotá. Rev Med Vet. 2014;(27):59-71.

Resumen

Debido a la ausencia de valores de gasometría arterial que se ajusten a nuestras condiciones ambientales y a la amplia variedad de datos no actualizados en la literatura y utilizados en la práctica diaria, obtenidos con alturas, razas y equipos diferentes a los disponibles en nuestro medio, es necesario generar conocimiento propio ajustado a nuestra realidad. Se realizó una medición sistemática al azar de sangre arterial y venosa en 100 caninos sanos a la altura de la sabana de Bogotá (Chía: 2652 msnm; Cajicá: 2558 msnm; Sopó: 2650 msnm; La Calera: 2718 msnm y Bogotá: 2630 msnm), utilizando el analizador I-STAT° con cartucho EG7+. Se encontraron valores de referencia de gasometría, electrolitos, bases efectivas y pH. Los valores fueron comparados entre cuatro grupos por peso. Para cada parámetro se realizó estadística descriptiva basada en promedio, desviación estándar, error estándar, y se hallaron los límites de confianza (95 %) y los intervalos con desviación estándar (una y dos desviaciones). Se evidenció disminución de PCO,, PO,, SO,, bicarbonato, BE. El pH se encontró levemente aumentado, similar a lo reportado por autores a grandes alturas y diferentes (no corroborado estadísticamente) a reportes en literatura, en los que la altura no fue una variable. Aun así son usados frecuentemente como referencia en la práctica de pequeños animales; solo la PO, presentó diferencias estadísticas por grupos de peso. Como conclusión, se evidenció una regulación del pH sanguíneo eficaz a 2600 msnm, con diferentes valores de bicarbonato, PCO2, PO2, BE, que indican la necesidad de obtener y utilizar valores de referencia acordes con condiciones locales.

Palabras clave: altura, caninos, electrolitos, I-STAT, gases arteriales, PO₂, PCO₂, pH, 2600 msnm.

Reference Values of Arterial Gases and Electrolytes in Canines from the Bogota Savanna

Abstract

Due to the lack of arterial gas values that meet our environmental conditions and the wide variety of out-of-date data in literature and used in everyday practice, obtained with different heights, breeds and equipment to the ones available in our context, it becomes necessary to generate our own knowledge adjusted to our reality. A random systematic measurement of arterial and venous blood was made on 100 healthy canines in the Bogota Savanna (Chia: 2652 m.a.s.l.; Cajica: 2558 m.a.s.l.; Sopo: 2650 m.a.s.l.; La Calera: 2718 m.a.s.l.; and Bogota: 2630 m.a.s.l.;), using the I-STAT analyzer with EG7+ cartridge. Reference values were found for gasometry, electrolytes, effective basis and pH. The values were compared between four groups by weight. Descriptive statistics were made for each parameter based on average, standard deviation and standard error, and the trust limits (95%) and the intervals

with standard deviation (one and two deviations) were found. A decrease on PCO₂, PO₂, SO₂, bicarbonate and BE was evident. The pH was found to be slightly increased, similar to the one reported by authors at great heights and different (not statistically confirmed) from reports in literature, where height was not a variable. Even so, they are frequently used as reference in the practice of small animals; only PO₂ presented statistical differences by groups of weight. As a conclusion, effective regulation of blood pH was evident at 2600 m.a.s.l., with different bicarbonate values, PCO₂, PO₂, BE, which suggest the need to obtain and use reference values consistent with local conditions.

Keywords: Canines, I-STAT, Arterial Gases, PO₂, PCO₂, pH, Electrolytes, Height, 2600 m.a.s.l.

Valores de referência de gases arteriais e de eletrólitos em caninos da savana de Bogotá

Resumo

Devido à ausência de valores de gasometria arterial que se ajuste a nossas condições ambientais e à ampla variedade de dados não atualizados na literatura e utilizados na prática diária, obtidos com alturas, raças e equipes diferentes aos disponíveis em nosso meio, é necessário gerar conhecimento próprio ajustado a nossa realidade. Realizou-se uma medição sistemática ao azar de sangue arterial e venoso em 100 caninos sãos à altura da savana de Bogotá (Chia: 2652 msnm; Cajicá: 2558 msnm; Sopó: 2650 msnm; a Calera: 2718 msnm e Bogotá: 2630 msnm), utilizando o analisador I-STAT* com cartucho EG7+. Encontraram-se valores de referência de gasometria, eletrólitos, bases efetivas e pH. Os valores foram comparados entre quatro grupos por peso. Para cada parâmetro se realizou estatística descritiva baseada na média, no padrão de desvio, erro padrão, e se encontrou os limites de confiança (95 %) e os intervalos com desvio padrão (um e dois desvios). Evidenciou-se diminuição de PCO,, PO₂, SO₃, bicarbonato, BE. O pH se encontrou levemente aumentado, similar ao reportado por autores a grandes alturas e diferentes (não corroborado estatisticamente) a relatórios em literatura, onde que a altura não foi uma variável.. Ainda assim são usados frequentemente como referência na prática de pequenos animais; só a PO, apresentou diferenças estatísticas por grupos de peso. Como conclusão, se evidenciou uma regulação do pH sanguíneo eficaz a 2600 msnm, com diferentes valores de bicarbonato, PCO,, PO,, BE, que indicam a necessidade de obter e utilizar valores de referência acordes com condições locais.

Palavras chave: caninos, I-STAT, gases arteriais, PO₂, PCO₂, pH, eletrólitos, altura, 2600 msnm.

Introducción

Las mediciones de gases arteriales y electrolitos se han convertido en una práctica frecuente para el abordaje clínico y terapéutico de los pacientes caninos con problemas digestivos, respiratorios, circulatorios y en estado crítico en general. La extremada sensibilidad de los gases y del pH frente a los diferentes cambios del organismo (1), del medio ambiente —incluyendo la altitud y la pre-

sión atmosférica—, la exagerada amplitud de los rangos de referencia encontrados en la literatura (2-6) que han sido obtenidos y realizados en condiciones especiales con perros fenotípica y genotípicamente disímiles, en condiciones geográficas diferentes hacen de este artículo una necesidad sentida para la aplicación en la práctica clínica de pequeños animales.

Al existir pocos reportes de valores de referencia ideales construidos a la altura en nuestro medio para caninos (7,8) —algunos derivados de proyectos de grado con algunas razas puntuales (9), y solo un trabajo de maestría del cual se deriva este artículo (10)—, se hace necesaria la consulta de valores de autores y manuales reconocidos (3,4,6,11), pero que, de acuerdo con las bases fisiológicas del concepto ácido-base, no son los más indicados, ya que la altura y los gases arteriales desempeñan un papel importante en la regulación del balance ácido-base (12,13).

A través de años de docencia y de experiencia en el tema de gases arteriales, los autores han identificado diferencias importantes en algunos datos involucrados en el concepto de balance ácidobase, no solo al compararlos con la literatura, sino también entre diferentes tamaños y razas de los pacientes, los cuales se pueden considerar como anormales en la práctica médica cuando no se realiza la correcta correlación clínica y se desestiman las variaciones entre tamaños, razas y condiciones ambientales.

Materiales y métodos

Localización

El sitio de muestreo se centró en el departamento de Cundinamarca, en la sabana de Bogotá, en los municipios de Chía (2652 msnm), Cajicá

(2558 msnm), Sopó (2650 msnm), La Calera (2718 msnm) y la ciudad de Bogotá (2630 msnm).

Población y muestra

Se utilizaron 100 perros registrados en la Asociación Club Canino Colombiano (ACCC) clasificados por peso y agrupados en cuatro grupos:

A. 25 perros de talla mini entre 1-10 kg

B. 25 perros de talla pequeña entre 11-20 kg

C. 25 perros de talla mediana entre 21-30 kg

D. 25 perros de talla grande, superior a 31 kg

Se les realizó una anamnesis y un examen clínico completo que se centró en sistema cardiovascular y respiratorio. No se tuvieron en cuenta animales menores de un año ni mayores de ocho, hembras en celo, hembras gestantes, animales con tratamientos farmacológicos o quirúrgico menor de dos meses, agresivos, estresados, recién introducidos al criadero, sin anamnesis completa y con estado corporal menor de 2,5.

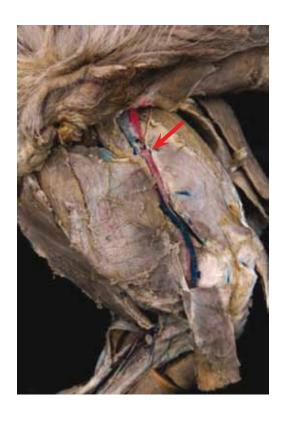
Variables

Los valores medidos por el cartucho EG7+ son: sodio (Na⁺), potasio (K⁺), dióxido de carbono total (TCO₂),* calcio ionizado (iCa⁺⁺), hematocrito (HTO), hemoglobina (Hb),* pH, presión de dióxido de carbono (PCO₂), presión de oxígeno (PO₂), bicarbonato (HCO₃),* bases efectivas (B_{Efect}- BE)* y saturación de oxígeno (SO₂).* Los valores marcados con asteriscos (*) son calculados, obtenidos a partir de los valores medidos directamente (11).

Análisis estadístico

Se realizó estadística descriptiva basada en promedio, desviación estándar y error estándar. Se calcularon límites de confianza al 95 % e intervalos con una o dos desviaciones estándar. Para determinar posibles diferencias entre grupos de animales clasificados por peso, se realizó un modelo completamente al

azar (CA) con un nivel de significancia p < 0,05 y una prueba no planeada de Tukey, previa verificación de los supuestos de normalidad y homocedasticidad. Los datos fueron almacenados en una base de datos y analizados bajo el paquete Statistix 8.0.


Métodos y procedimiento

Inicialmente para la ubicación del predio se utilizó un Garmin eTrex Vista HCx Handheld® GPS (sistema de posicionamiento global), y se hallaron la altitud y la latitud exactas. Posterior a la selección de los pacientes, de acuerdo con los criterios de exclusión e inclusión utilizados en este estudio, se realizó la toma de sangre arterial mediante el uso de la punción percutánea de la arteria femoral con jeringas de insulina, siguiendo la anatomía reportada en la

figura 1, con el perro situado en decúbito lateral, tal como lo describen Estepa y colaboradores (14). Se colectó 1 ml de sangre aproximadamente. Luego, sin dejar transcurrir más de dos minutos, fue analizada por un equipo de gases arteriales I-STAT® de la marca Abbot, utilizando el cartucho EG7+.

También se realizó la toma de sangre venosa por medio de una punción percutánea de la vena cefálica, con la cual se colectaron 3 ml de sangre venosa. Para la obtención de glicemia (química seca) inmediatamente se procesó utilizando un glucómero Accu Check Active. Adicional a esto, la muestra fue refrigerada y en un periodo no mayor a dos horas se procedió a obtener nitrógeno ureico en sangre (BUN) por química húmeda, utilizando un equipo Erba Mannheim Chem-7°.

Figura 1. Cara medial del miembro pelviano izquierdo preservado en formaldehído y en el cual se muestra la anatomía detallada de la arteria femoral. En color rojo se encuentra la arteria que es más craneal que la vena en color azul oscuro; se debe tener en cuenta el pulso y la coloración de la sangre obtenida para procesar la muestra

RESULTADOS

Se presentan los resultados generales para los 100 caninos y los de comparación para cada grupo de peso. Estos serán detallados solo para la PO₂, ya que es el único elemento que presentó diferencias estadísticamente significativas entre los grupos de peso. Las variables tales como BUN, glucosa, TCO₂, Hct, Hb, CO₂d y HCO₃-:CO₂d no serán discutidas ni se realizaron comparaciones entre grupos, teniendo en cuenta que TCO₂, CO₂d y HCO₃-:CO₂d son calculados por fórmulas matemáticas a partir de

datos medidos directamente; el BUN y la glucosa fueron medidos para el cálculo de la osmolaridad, pero no para incluirlos en el estudio; el hematocrito y hemoglobina no son confiables como resultados al ser emitidos por el I-STAT®, ya que no son medidos directamente y son calculados (11). A continuación se presentan en las tablas los resultados de los diferentes grupos. Resultados resumidos del grupo 1-10 kg de peso (tabla 1).

Resultados resumidos del grupo 11-20 kg de peso (tabla 2).

Tabla 1. Resultados en grupo A

Dato	Media	Intervalos con nivel de confianza (95%)	Intervalos con desviación estándar	Intervalos con dos desviaciones estándar
PCO ₂ (mmHg)	28,844	27,537-30,150	25,679-32,009	22,514-35,174
PO ₂ (mmHg)	56,320	54,460-58,180	51,813-60,827	47,307-65,333
SO ₂ (%)	90,480	89,40-91,550	87,88-93,080	85,28-95,680
Na+ (mEq/L)	142,160	140,95-143,360	139,24-145,070	136,33-147,980
K+ (mEq/L)	4,172	4,00-4,340	3,75-4,580	3,34-5,000
iCa ²⁺ (mmol/L)	1,382	1,342-1,422	1,286-1,478	1,190-1,574
HCO ₃ - (mmol/L)	19,690	18,82-20,550	17,59-21,790	15,49-23,890
pH	7,442	7,428-7,456	7,407-7,476	7,373-7,510
Bases efect.	-4,520	-5,46-(-3,570)	-6,81-(-2,220)	-9,10-0,067
BUN (mg/dl)	33,184	39,137-27,231	47,606-18,762	62,028-4,340
Glucosa (mg/dl)	95,960	108,265-83,655	125,770-66,150	155,580-36,340
TCO ₂ (mmol/L)	20,920	22,012-19,828	23,564-18,276	26,209-15,631
Hct (%)	42,880	45,807-39,953	49,971-35,789	57,061-28,699
Hb (g/dL)	14,592	15,588-13,596	17,005-12,179	19,418-9,766
CO ₂ d (mmol/L)	0,865	0,905-0,826	0,960-0,770	1,055-0,675
HCO ₃ -:CO ₂ d (mmol/L)	22,826	23,496-22,157	24,448-21,205	26,07-19,583

Resultados resumidos del grupo 21-30 kg de peso (tabla 3).

Resultados resumidos del grupo superior a 31 kg de peso (tabla 4).

Tabla 2. Resultados en grupo B

Dato	Media	Intervalos con nivel de confianza (95 %)	Intervalos con desviación estándar	Intervalos con dos desviaciones estándar
PCO ₂ (mmHg)	28,064	26,904-29,224	25,255-30,873	22,446-33,682
PO ₂ (mmHg)	55,160	53,066-57,254	50,088-60,232	45,016-65,304
SO ₂ (%)	90,400	89,60-91,190	88,46-92,330	86,52-94,270
Na+ (mEq/L)	144,120	142,27-145,960	139,64-148,590	135,17-153,070
K+ (mEq/L)	4,072	3,962-4,182	3,807-4,337	3,541-4,603
iCa ²⁺ (mmol/L)	1,384	1,345-1,424	1,288-1,480	1,192-1,576
HCO ₃ - (mmol/L)	18,730	17,85-19,610	16,59-20,860	14,45-23,000
pH	7,431	7,421-7,442	7,406-7,457	7,380-7,482
Bases efect.	-5,400	-6,45-(-4,340)	-7,96-(-2,830)	-10,53-(-0,260)
BUN (mg/dl)	38,322	43,209-33,437	50,160-26,485	61,998-14,648
Glucosa (mg/dl)	85,680	92,002-79,358	100,995-70,365	116,311-55,049
TCO ₂ (mmol/L)	19,880	21,031-18,729	22,669-17,091	25,457-14,303
Hct (%)	46,400	49,329-43,471	53,495-39,305	60,589-32,211
Hb (g/dL)	16,040	17,058-15,022	18,506-13,574	20,973-11,107
CO ₂ d (mmol/L)	0,8419	0,877-0,807	0,926-0,758	1,010-0,673
HCO ₃ -:CO ₂ d (mmol/L)	22,246	22,820-21,672	23,637-20,856	25,027-19,466

Tabla 3. Resultados en grupo C

Dato	Media	Intervalos con nivel de confianza (95 %)	Intervalos con desviación estándar	Intervalos con dos desviaciones estándar
PCO ₂ (mmHg)	28,384	26,216-30,552	23,132-33,636	17,879-38,889
PO ₂ (mmHg)	56,080	53,564-62,176	49,984-62,176	43,888-68,272
SO ₂ (%)	90,080	88,71-91,440	86,76-93,390	83,44-96,710
Na ⁺ (mEq/L)	143,680	141,51-145,850	138,42-148,930	133,16-154,190
K+ (mEq/L)	4,180	3,99-4,360	3,73-4,620	3,28-5,070
iCa ²⁺ (mmol/L)	1,374	1,414-1,334	1,277-1,477	1,181-1,567
HCO ₃ - (mmol/L)	18,750	17,38-20,120	15,43-22,060	12,12-25,380
рН	7,430	7,415-7,445	7,394-7,466	7,357-7,503
Bases efect.	-5,520	-6,85-(-4,180)	-8,74-(-2,290)	-11,97-(-0,930)
BUN (mg/dl)	36,126	40,567-31,685	46,643-25,609	57,161-15,092
Glucosa (mg/dl)	78,240	82,377-74,103	88,262-68,218	98,284-58,196
TCO ₂ (mmol/L)	19,600	21,000-18,200	22,991-16,209	26,382-12,818
Hct (%)	48,600	51,485-45,715	55,588-41,612	62,576-34,624
Hb (g/dL)	16,524	17,506-15,542	18,903-14,145	21,283-11,765
CO ₂ d (mmol/L)	0,85152	0,917-0,786	1,009-0,694	1,167-0,536
HCO ₃ -:CO ₂ d (mmol/L)	22,2516	23,075-21,428	24,246-20,257	26,240-18,263

Resultados resumidos de los 100 animales (tabla 5).

Tabla 4. Resultados en grupo D

Dato	Media	Intervalos con nivel de confianza (95 %)	Intervalos con desviación estándar	Intervalos con dos desviaciones estándar
PCO ₂ (mmHg)	26,376	24,705-28,047	22,328-30,424	18,280-34,472
PO ₂ (mmHg)	59,800	57,523-62,077	54,285-65,315	48,777-70,830
SO ₂ (%)	90,920	89,37-92,460	87,17-94,660	83,43-98,400
Na+ (mEq/L)	144,400	143,88-144,910	143,14-145,650	141,88-146,910
K+ (mEq/L)	4,096	3,985-4,207	3,828-4,364	3,559-4,633
iCa ²⁺ (mmol/L)	1,348	1,324-1,372	1,290-1,406	1,232-1,464
HCO ₃ - (mmol/L)	17,950	17,14-18,770	15,98-19,930	14,00-21,900
pH	7,444	7,426-7,463	7,399-7,489	7,355-7,534
Bases efect.	-6,120	-7,03-(-5,210)	-8,32-(-3,910)	-10,52-(-1,710)
BUN (mg/dl)	37,8696	42,541-33,198	49,186-26,553	60,502-15,237
Glucosa (mg/dl)	78,6800	81,112-76,248	84,573-72,787	90,466-66,894
TCO ₂ (mmol/L)	18,800	19,684-17,916	20,941-16,659	23,082-14,518
Hct (%)	48,840	51,109-46,571	54,338-43,342	59,835-37,845
Hb (g/dL)	16,984	17,628-16,340	18,544-15,424	20,104-13,864
CO ₂ d (mmol/L)	0,791	0,841-0,741	0,913-0,670	1,034-0,548
HCO ₃ -:CO ₂ d (mmol/L)	22,935	24,055-21,816	25,648-20,223	28,360-17,511

Tabla 5. Resumen de los resultados en los 100 perros

Dato	Media	Intervalos con nivel de confianza	Intervalos con desviación estándar
PCO ₂ (mmHg)	27,917	27,126-28,708	23,932-31,902
PO ₂ (mmHg)	56,840	55,741-57,939	51,301-62,379
SO ₂ (%)	90,470	89,885-91,055	87,521-93,419
Na+ (mEq/L)	143,590	142,828-144,352	139,750-147,430
K+ (mEq/L)	4,130	4,059-4,201	3,773-4,487
iCa ²⁺ (mmol/L)	1,372	1,355-1,390	1,284-1,460
HCO ₃ - (mmol/L)	18,783	18,290-19,276	16,300-21,266
pH	7,437	7,430-7,444	7,401-7,473
Bases efect.	-5,390	-5,911-(-4,869)	-8,010-(-2,762)
BUN (mg/dl)	36,370	33,96-38,790	24,26-48,490
Glucosa (mg/dl)	84,640	80,89-88,380	65,74-103,530
TCO ₂ (mmol/L)	19,800	19,23-20,360	16,96-22,630
Hct (%)	46,680	45,28-48,070	39,65-53,700
Hb (g/dL)	16,030	15,56-16,500	13,65-18,410
CO ₂ d (mmol/L)	0,830	0,81-0,860	0,71-0,950
HCO ₃ -:CO ₂ d(mmol/L)	22,560	22,16-22,170	18,58-26,540

Fuente: Trujillo (10).

Como se mencionó anteriormente, solo la PO₂ presentó diferencias estadísticamente significativas (figura 2). Luego, al realizar la prueba no planeada de Tukey, se identificó que los grupos de B y C se comportaron igual. El grupo A se comportó diferente así como el grupo D. De esta manera, encontramos que la media para los grupos de perros de 11-20 kg es menor y para los grupos de más 31 kg fue mayor. La PCO₂ no presentó diferencias estadísticas; sin

embargo, los valores más bajos (26,376 mmHg) fueron para los perros de más de 30 kg (figura 3). El HCO₃- tampoco presentó diferencias significativas, pero es importante resaltar que existe una tendencia a disminuir a medida que aumenta el peso del paciente, algo similar a lo ocurrido en PCO₂ (figura 4). En las bases efectivas, al igual que en PCO₂ y HCO₃-, se distingue la tendencia a favor de la disminución a medida que se gana peso (figura 5).

59,08 61 59 56,00 57 32 mmHg 55 53 b 51 C 49 47 45 Α В C D Grupos de peso

Figura 2. Valores encontrados de O₂ para los grupos por peso

Nota. Límites con el error estándar.

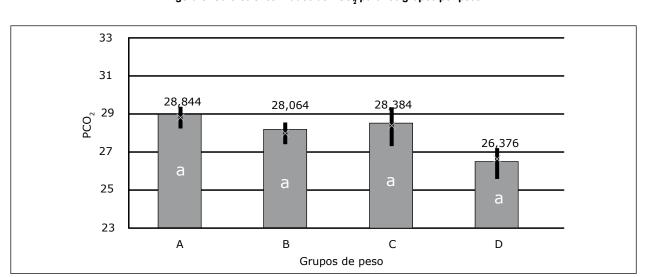


Figura 3. Valores encontrados de PCO₂ para los grupos por peso

Nota. Límites con el error estándar.

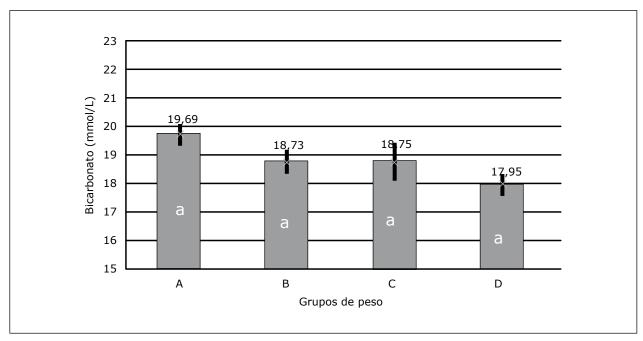


Figura 4. Valores encontrados de HCO₃- para los grupos por peso

Nota. Límites con el error estándar.

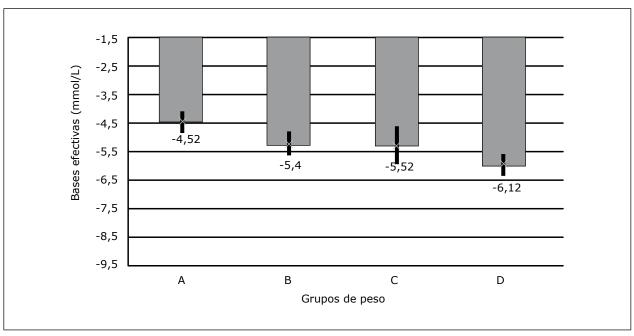


Figura 5. Valores encontrados de bases efectivas para los grupos por peso

Nota. Límites con error estándar.

Discusión

Los conceptos más relevantes de la fisiología a grandes alturas incluyen presión barométrica, que para Bogotá es 560 mmHg, y presión de O, en el ambiente de 117 mmHg (a nivel del mar son 760 mmHg y 159 mmHg, respectivamente) (15). Por otro lado, la presión inspiratoria de oxígeno (PIO₂), la presión alveolar de oxígeno (PaO₂), así como las diferentes modificaciones orgánicas de los mamíferos para hemoglobina, proteínas plasmáticas, hematocrito, eritropoyetina y circulación pulmonar (8,12,16-21) influyen de manera directa e indirecta en el mantenimiento de este valor. Por ejemplo, a nivel alveolar en humanos, en Bogotá los valores de la PO, pasan de 100 (a nivel del mar) a 72-77 mmHg, lo cual afectará la diferencia alvéolo-arterial (21). Por ende, los valores arteriales de oxígeno deben estar alrededor de 62 mmHg, que es lo queda disponible en sangre arterial. Valores similares de PO, fueron encontrados en perros a 2300 msnm de 61,9 mmHg (54,5-69,3) (7) y a 3500 msnm de 52,1 mmHg (47-57,2) (8), y en perros de agility en el 2006 por Forero, Lozano y Camargo (22), quienes reportaron 61,4666 mmHg (\pm 5,6551), con el uso también del I-STAT. En cuanto a la diferencia encontrada entre grupos de peso de este valor (PO2), su explicación es documentada en Drucker (23), quien relaciona el tamaño corporal y el metabolismo. Así, se ha observado que el consumo de oxígeno (VO₂) (mmoL/ min/Kg) en los mamíferos cambia en función de su tamaño, teniendo en cuenta esta relación exponencial: $VO_2 = 0.44 \times \text{masa}$ (kg)^{0,75}; se puede apreciar que el consumo de oxígeno no es directamente proporcional al peso (el exponente tendría que ser igual a 1), ni proporcional a la superficie corporal (el exponente tendría que ser igual a 2/3 o 0,66). En proporción, los animales de menor peso tienen mayor metabolismo; es decir, el metabolismo por peso es mayor. Varios parámetros respiratorios en mamíferos (parámetros dependientes de la función, ventilación/min) se relacionan de manera similar a la anterior, y varían solo un poco al exponente e intercepto; otros parámetros son proporcionales al tamaño (peso) del animal, por ejemplo, el peso pulmonar, los volúmenes pulmonares y los flujos respiratorios.

Los flujos espiratorios forzados en capacidades vitales son mayores en los mamíferos pequeños que en los grandes, lo cual permite contar con una ventilación amplia en relación con el peso corporal. El requerimiento tan alto de metabolismo por peso en animales pequeños se cumple con una superficie alveolar mayor, proporcional al consumo de oxígeno. Como el tamaño y el volumen pulmonar son proporcionales al peso, el incremento en superficie se logra mediante alveolos más pequeños (23).

En cuanto a los valores de PCO, encontrados, la "hipocapnia relativa" se relaciona a una respuesta adaptativa en profundidad respiratoria, no en frecuencia, ya que las constantes estaban dentro de los valores normales. Esta condición es reportada por Silbernagl y Despopoulos (16), en la cual solo a partir de los 4000 msnm es el punto crítico donde la PAO₂ (presión alveolar de oxígeno) se puede mantener sin que se presente el aumento de la respiración y la respiración máxima (aproximadamente tres veces la respiración en reposo) en presencia de un déficit de O₂. La hipertensión pulmonar ha sido bien documentada como respuesta fisiológica a las grandes alturas (24). Por otro lado, en estudios realizados a 2300 msnm también se encontraron resultados disminuidos de PCO2, los cuales fueron de 24 mmHg (± 3,1) (7), y a 3500 msnm que fueron de 24,1 mmHg $(\pm 1,6)$ (8); por Forero y colaboradores a 2600 msnm fueron de 29,0733 (± 5,3194) (22). La tendencia a bajar los valores de PCO, a medida que se gana peso es entendido dentro de

los conceptos de intercambio ventilación-perfusión (V/Q) y su mayor disposición de realizar respiraciones más profundas por su capacidad torácica, en la que esta relación es a la inversa, ya que se encuentra en un mayor espacio de intercambio y una adecuada perfusión capilar para generar una relación perfecta, que en condiciones normales debe ser de 1 (25).

El bicarbonato también presentó una tendencia a disminuir a medida que aumenta el peso del paciente; algo similar a lo ocurrido en PCO2, lo cual es consecuente, ya que este valor es calculado en el equipo a partir de la PCO₂. Esto quiere decir que debido a la disminución de PCO, existe la disminución de bicarbonato sanguíneo, por vía renal, lo que permite que se mantenga el balance en el pH y estado ácido-base. Valores similares fueron hallados en Bogotá 18,0133 (± 1,8512) (22). Las bases efectivas tuvieron una tendencia a valores más negativos, en contraste con las investigaciones de Glaus (7,8), quien en grandes alturas a 2300 msnm y 3500 msnm encontró valores aun más negativos de -11,6 (-13-[-10,2]) y -8,3 (-10,1-[-6,5]); mientras que Forero, Lozano y Camargo en el 2006 encontraron valores más ajustados a los reportados en nuestro estudio -6,6 $(\pm 1,8439)$ (22). Se podría deducir con soportes en lo encontrado en grandes alturas, y la clara evidencia de disminución de bicarbonato, que este valor tan negativo de las bases es una consecuencia de este estado adaptativo natural, lo cual se correlaciona con los valores en la PCO, y el bicarbonato, ya que también las bases efectivas son un valor calculado a partir del pH y presión de CO₂, lo que las hace más negativas cuando se disminuye el valor de bicarbonato.

Conclusiones

El balance ácido-base y los gases arteriales presentan muchas variables que influyen de manera directa e indirecta en el mantenimiento del pH, la frecuencia respiratoria y los electrolitos. Es claro que a la altura de la sabana de Bogotá los caninos sanos tienen una regulación del pH sanguíneo eficaz, pero presentan diferencias importantes de los valores de gases arteriales y del balance ácido-base. Esto destaca las disminuciones de la presión de los gases dióxido de carbono y oxígeno, que a su vez influyen de manera directa en las concentraciones del bicarbonato (sobre todo el PCO₂), lo que produce disminuciones en su valor debido a su manejo corporal (renal, sanguíneo, etc.). Esto también crea falsas apariencias de imbalances si no se contrasta con la sintomatología clínica y el pH.

Es fundamental adquirir dominio y conocimiento de la fisiología ácido-base para evitar confusiones, y así mejorar en el diagnóstico y el abordaje de desequilibrios en la práctica clínica de pequeños animales. La utilización de estos valores puede evitar que en la práctica se clasifiquen animales sanos como enfermos, al utilizar tablas de la literatura común, pero no específica para la altura y las condiciones locales de nuestros analizadores y animales.

Las diferencias entre grupos de peso no son estadísticamente significativas para los resultados de balance ácido-base y electrolitos, pero se mantienen, como ha sido historia, en valores de oxigenación. Debido a la gran diversidad de razas, características fenotípicas y genotípicas de los caninos, siempre surge la necesidad de identificar adaptaciones o diferencias, que en algunos casos se deben a la raza y de alguna manera se pueden traducir en peso, ya que valores como la presión de gases y los calculados a partir de ellos (bases efectivas, bicarbonato) presentaron una tendencia a la disminución a medida que aumenta el peso.

Para la práctica médico-clínica de pequeños animales, el estudio arroja datos diferentes, reales y normales, que pueden ser usados como consulta en momentos de toma de decisiones, abordajes a enfermedades, pronósticos y tratamientos de los imbalances, más aun cuando por su rapidez los datos del I-STAT se usan en pacientes críticos, con pronósticos reservados.

El uso de gases arteriales es frecuente en pacientes con disturbios respiratorios y digestivos (enterovirus en cachorros, etc.), en los cuales el estado de hidratación es de suma importancia. Para realizar una correcta hidratación y manejo electrolítico, es necesario tener en cuenta la osmolaridad, valores de cationes y aniones, sin olvidar que para las reposiciones de bicarbonato se debe tener un cuidado minucioso de las cantidades que se van a reponer. De tal forma, para el cálculo de estos datos siempre se necesita un valor de base normal (que frecuentemente es 24 mmol/L), que difiere de lo encontrado en este estudio (18 mmol/L), que sobreestime el bicarbonato que se va a reponer, lo cual puede aumentar la morbimortalidad de los pacientes.

La mayoría de artefactos que pueden alterar los resultados dependen de la manera como los analizadores obtienen los resultados, pero estos a su vez dependen en gran medida de la forma como se tome y se maneje la muestra (en ayunas, jeringas, tiempo, diluyentes, anticoagulantes, cantidades, etc.). Estos artefactos pueden ser evitados si se conocen las condiciones mínimas y las recomendaciones necesarias para obtener muestras procesables (incluidas en los manuales), lo cual debe ser conocido por el personal que toma y procesa las muestras.

REFERENCIAS

 Shapiro BA, Kozlowski-Templin R, Peruzzi WT. Manejo clínico de los gases sanquíneos. 5a ed. México: Panamericana; 2004.

- 2. Grosenbaugh DA, Gadawaski JE, Muir WW. Evaluation of a portable clinical analyzer in a veterinary hospital setting. J Am Vet Med Assoc. 1998;213(5):691-4.
- 3. Dibartola, S. P. Introduction to acid-base disorders. En: Fluid, electrolyte and acid-base disorders in small animal practice. 3a ed. St. Louis, MO: Saunders; 2006. p. 229-51.
- 4. Ilkiw JE, Rose RJ, Martin IC. A Comparison of simultaneously collected arterial, mixed venous, jugular venous and cephalic venous blood samples in the assessment of blood-gas and acid-base status in the dog. J Vet Intern Med. 1991;5(5):294-8.
- 5. Bailey JE, Pablo LS. Practical approach to acid-base disorders. Vet Clin North Am Small Anim Pract. 1998;28(3):645-62.
- Haskins SC. An overview of acid-base physiology. J Am Vet Med Assoc. 1977;170(4):423-8.
- 7. Glaus TM, Hauser K, Hässig M, Lipp B, Reusch CE. Non-invasive measurement of the cardiovascular effects of chronic hypoxemia on dogs living at moderately high altitude. Vet Rec. 2003;152(26):800-3.
- 8. Glaus TM, Hässig M, Baumgartner C, Reusch CE. Pulmonary hypertension induced in dogs by hypoxia at different high-altitude levels. Vet Res Commun. 2003;27(8):661-70.
- Lozano MP, Camargo, RB. Estandarización de las respuestas fisiológicas en caninos post entrenamiento de Agility en Bogotá [tesis de pregrado]. Bogotá: Universidad de La Salle; 2006.
- Trujillo JC. Estandarización de valores de gases arteriales, osmolaridad y electrolitos en caninos de la sabana de Bogotá [tesis de maestría]. Bogotá: Universidad de La Salle; 2011.
- 11. HESKA. i-STAT Handheld Clinical Analyzer User. Manual; 2001.
- Monge C, León-Velarde F. Modificaciones respiratorias. En: El reto fisiológico de vivir en los Andes. Instituto Francés de Estudios Andinos; 2003. p. 85-102.

- Paulev PE, Zubieta-Calleja GR. Essentials in the diagnosis of acid-base disorders and their high altitude application. J Physiol Pharmacol. 2005;56 Suppl 4:155-70.
- 14. Estepa JC, Lopez I, Bas S, Mayer-Valor R, Agulera Tejero E. Valores de referencia de gasometría arterial y estado ácido-básico en perros. Med Vet. 1999;16(5):264-9.
- Patiño JF. Física de los gases. En: Gases sanguíneos, fisiología de la respiración e insuficiencia respiratoria aguda. 6a ed. Bogotá: Médica Internacional; 1998. p.19-33.
- 16. Silbernagl S, Despopoulos A. Fisiología texto y atlas. 7a ed. Madrid: Panamericana; 2008.
- 17. Dibartola SP. Respiratory acid-base disorders. En: Fluid, electrolyte and acid-base disorders in small animal practice. 3a ed. St. Louis, MO: Saunders; 2006. p. 283-96.
- Syvertsen GR, Harris JA. Erythropoietin production in dogs exposed to high altitude and carbon monoxide. Am J Physiol. 1973;225(2):293-9.
- Vogel JA, Hannon JP. Cardiovascular and metabolic responses of dogs to exercise at high altitude. J Appl Physiol. 1966;21(5):1595-601.

- 20. Vogel JA, Bishop GW, Genovese RL, Powell TL. Hematology, blood volume, and oxygen transport of dogs exposed to high altitude. J Appl Physiol. 1968;24(2):203-10.
- Patiño JF. Físiología de la respiración. En: Gases sanguíneos, fisiología de la respiración e insuficiencia respiratoria aguda. 6a ed. Bogotá: Médica Internacional; 1998. p. 37-91.
- 22. Forero LJ, Lozano MP, Camargo RB. Parámetros fisiológicos en caninos pre y post competencia de Agility en Bogotá, Colombia. Rev Med Vet. 2006;(12):57-71.
- Padilla PR. Introducción a la respiración: atmósfera, buceo, ejercicio. En: Fisiología médica. México DF: Manual Moderno; 2005. p. 275-87.
- 24. Grover RF, Johnson RL, Mccullough RC, Mccullough RE, Hofmeister SE, Campbell WB, et al. Pulmonary hypertension and pulmonary vascular reactivity in beagles at high altitude. J Appl Physiol. 1988;65(6):2632-40.
- 25. Cunningham JG, Klein BG. Fisiología veterinaria. 4a ed. Barcelona: Elsevier; 2009.